CSP-COMPLEXITY

Constraint Satisfaction Problems: Algorithms and Complexity

 Coordinatore TECHNISCHE UNIVERSITAET DRESDEN 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Germany [DE]
 Totale costo 830˙316 €
 EC contributo 830˙316 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2010-StG_20091028
 Funding Scheme ERC-SG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-01-01   -   2015-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Ms.
Nome: Julie
Cognome: Zittel
Email: send email
Telefono: +33 1 45075301
Fax: +33 1 45075819

FR (PARIS) beneficiary 606˙364.40
2    TECHNISCHE UNIVERSITAET DRESDEN

 Organization address address: HELMHOLTZSTRASSE 10
city: DRESDEN
postcode: 1069

contact info
Titolo: Mr.
Nome: Bertram
Cognome: Skibinski
Email: send email
Telefono: +49 351 463 42191
Fax: +49 351 463 39742

DE (DRESDEN) hostInstitution 223˙951.60
3    TECHNISCHE UNIVERSITAET DRESDEN

 Organization address address: HELMHOLTZSTRASSE 10
city: DRESDEN
postcode: 1069

contact info
Titolo: Prof.
Nome: Manuel
Cognome: Bodirsky
Email: send email
Telefono: +49 351 463 35255
Fax: +49 351 463 34235

DE (DRESDEN) hostInstitution 223˙951.60

Mappa

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

algebra    fundamental    algorithmic    infinite    tools    additional    generalization    domain    mathematical    csps    theory    complexity    satisfaction    domains    constraint    finite    model    universal   

 Obiettivo del progetto (Objective)

'The complexity of Constraint Satisfaction Problems (CSPs) has become a major common research focus of graph theory, artificial intelligence, and finite model theory. A recently discovered connection between the complexity of CSPs on finite domains to central problems in universal algebra led to additional activity in the area.

The goal of this project is to extend the powerful techniques for constraint satisfaction to CSPs with infinite domains. The generalization of CSPs to infinite domains enhances dramatically the range of computational problems that can be analyzed with tools from constraint satisfaction complexity. Many problems from areas that have so far seen no interaction with constraint satisfaction complexity theory can be formulated using infinite domains (and not with finite domains), e.g. in phylogenetic reconstruction, temporal and spatial reasoning, computer algebra, and operations research. It turns out that the search for systematic complexity classification in infinite domain constraint satisfaction often leads to fundamental algorithmic results.

The generalization of constraint satisfaction to infinite domains poses several mathematical challenges: To make the universal algebraic approach work for infinite domain constraint satisfaction we need fundamental concepts from model theory. Luckily, the new mathematical challenges come together with additional strong tools, such as Ramsey theory or results from model theory. The most important challgenges are of an algorithmic nature: finding efficient algorithms for significant constraint languages, but also finding natural classes of problems that can be solved by a given algorithm.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

PARIETALACTION (2013)

The human Parietal Lobe

Read More  

TIE2+MONOCYTES (2009)

Tie2-expressing monocytes: Role in tumor angiogenesis and therapeutic targeting

Read More  

SNP (2014)

Inference for Semi-Nonparametric Econometric Models

Read More