HARG

Harmonic analysis on reductive groups

 Coordinatore UNIVERSITEIT VAN AMSTERDAM 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Netherlands [NL]
 Totale costo 1˙769˙000 €
 EC contributo 1˙769˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2010-AdG_20100224
 Funding Scheme ERC-AG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-03-01   -   2016-02-29

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITAET PADERBORN

 Organization address address: WARBURGER STRASSE 100
city: PADERBORN
postcode: 33098

contact info
Titolo: Ms.
Nome: Daniela
Cognome: Gerdes
Email: send email
Telefono: +49 5251 60 2562

DE (PADERBORN) beneficiary 680˙502.20
2    GOTTFRIED WILHELM LEIBNIZ UNIVERSITAET HANNOVER

 Organization address address: Welfengarten 1
city: HANNOVER
postcode: 30167

contact info
Titolo: Prof.
Nome: Bernhard
Cognome: Kroetz
Email: send email
Telefono: +49 511 762 2361
Fax: +49 511762 3518

DE (HANNOVER) beneficiary 128˙480.23
3    UNIVERSITEIT VAN AMSTERDAM

 Organization address address: SPUI 21
city: AMSTERDAM
postcode: 1012WX

contact info
Titolo: Ms.
Nome: J.C.M.
Cognome: Lansbergen
Email: send email
Telefono: +31 20 5256915
Fax: +31 20 5257675

NL (AMSTERDAM) hostInstitution 960˙017.60
4    UNIVERSITEIT VAN AMSTERDAM

 Organization address address: SPUI 21
city: AMSTERDAM
postcode: 1012WX

contact info
Titolo: Prof.
Nome: Eric Marcus
Cognome: Opdam
Email: send email
Telefono: 31205255205
Fax: 31205257820

NL (AMSTERDAM) hostInstitution 960˙017.60

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

   adic    of    normalization    algebras    representations    plancherel    theory    reeder    transform    intend    groups    spherical    bernstein    functions       series    affine    reductive    we    packets    hecke    spaces    real    discrete    for    components    unitary   

 Obiettivo del progetto (Objective)

'We propose to attack a variety of fundamental open problems in harmonic analysis on $p$-adic and real reductive groups.

Specifically we seek solutions to the local Langlands conjectures and various normalization problems of discrete series representations. For $p$-adic groups, affine Hecke algebras are a major technical tool. Our understanding of these algebras with unequal parameters has advanced recently and allows us to address these problems. We will compute the Plancherel measure on the Bernstein components explicitly. Using a new transfer principle of Plancherel measures between Hecke algebras we will combine Bernstein components to form $L$-packets, following earlier work of Reeder in small rank. We start with the tamely ramified case, building on work of Reeder-Debacker. We will also explore these methods for $L$-packets of positive depth, using recent progress due to Yu and others. Furthermore we intend to study non-tempered unitary representations via affine Hecke algebras, extending the work of Barbasch-Moy on the Iwahori spherical unitary dual.

As for real reductive groups we intend to address essential questions on the convergence of the Fourier-transform. This theory is widely developed for functions which transform finitely under a maximal compact subgroup. We wish to drop this condition in order to obtain global final statements for various classes of rapidly decreasing functions. We intend to extend our results to certain types of homogeneous spaces, e.g symmetric and multiplicity one spaces. For doing so we will embark to develop a suitable spherical character theory for discrete series representations and solve the corresponding normalization problems.

The analytic nature of the Plancherel measure and the correct interpretation thereof is the underlying theme which connects the various parts of this proposal.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

IPLASTICITY (2013)

Induction of juvenile-like plasticity in the adult brain

Read More  

FOGLIP (2010)

Food Globalisation in Prehistory

Read More  

NANOOXIDES (2013)

Nanosized porous molecular metal oxides with functionalizable cavities and soft matter behaviour allow studies of new phenomena

Read More