HQSMCF

"Homotopy quantum symmetries, monoidal categories and formality"

 Coordinatore UNIVERSITAET ZUERICH 

 Organization address address: Raemistrasse 71
city: ZURICH
postcode: 8006

contact info
Titolo: Prof.
Nome: Alberto
Cognome: Cattaneo
Email: send email
Telefono: +41 44 635 58 77
Fax: +41 44 635 57 06

 Nazionalità Coordinatore Switzerland [CH]
 Totale costo 225˙233 €
 EC contributo 225˙233 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2010-IOF
 Funding Scheme MC-IOF
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-01-01   -   2014-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITAET ZUERICH

 Organization address address: Raemistrasse 71
city: ZURICH
postcode: 8006

contact info
Titolo: Prof.
Nome: Alberto
Cognome: Cattaneo
Email: send email
Telefono: +41 44 635 58 77
Fax: +41 44 635 57 06

CH (ZURICH) coordinator 225˙233.60

Mappa

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

monoidal    algebra    formality    quasi    deformations    categories    algebras    braided    quantum    infin    submanifolds    hopf    prove    theory    simultaneous    examples    governing    groups    give    poisson    manifold    coisotropic    interdisciplinary    lie    triangular    homotopy    host    quantization    physics   

 Obiettivo del progetto (Objective)

'This project will be hosted at the MIT (outgoing host) and at the University of Zurich (return host). Its main objectives are : (I) to develop a theory of homotopy quantum groups. This can be understood as the natural the- ory that should sit at the intersection of four important disciplines of mathematics and physics : monoidal categories, homotopy theory, quantum groups and higher categories. This fact gives a clear multidisciplinary aspect to the proposal. (II) to prove the formality of the homotopy Lie algebra governing simultaneous deformations of a Poisson manifold and its coisotropic submanifolds. This is the key step in solving the problem of quantization of symmetries from the point of view of deformation quantization, giving interdisciplinary applications. These two objectives organize themselves into subobjectives : I1 ) define homotopy braided monoidal categories (∞-braided ∞-monoidal category) I2 ) define homotopy quasi-triangular quasi-Hopf algebras (∞-triangular ∞-Hopf algebras) I3 ) define monodromy for higher connections I4 ) give examples of higher Drinfeld associators I5 ) define and give examples of homotopy quantum groups II1 ) construct the homotopy Lie algebra governing simultaneous deformations of a Poisson manifold and its coisotropic submanifolds II2 ) prove the formality of this homotopy Lie algebra. Interdisciplinary aspects come also from tools used which are borrowed from physics (higher holonomies, branes, quantization) or from new rewriting techniques in computer science and operads (Gröbner basis).'

Altri progetti dello stesso programma (FP7-PEOPLE)

RN 2012 (2012)

Researchers’ Night 2012 in the Faroe Islands

Read More  

S.P CENP-A (2011)

Mechanisms of CENP-A Assembly and Propagation at Fission Yeast Centromeres

Read More  

DEPENSATION (2012)

Spatial population dynamics of invasive non-native species (re)invasions at low density

Read More