Opendata, web and dolomites

ComBact SIGNED

How complement molecules kill bacteria

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "ComBact" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAIR MEDISCH CENTRUM UTRECHT 

Organization address
address: HEIDELBERGLAAN 100
city: UTRECHT
postcode: 3584 CX
website: www.umcutrecht.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 1˙497˙290 €
 EC max contribution 1˙497˙290 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-STG
 Funding Scheme /ERC-STG
 Starting year 2015
 Duration (year-month-day) from 2015-03-01   to  2020-02-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAIR MEDISCH CENTRUM UTRECHT NL (UTRECHT) coordinator 1˙497˙290.00

Mappa

 Project objective

This proposal aims to provide insight into how bacteria are killed by the complement system, an important part of the host immune response against bacterial infections. Complement is a large protein network in plasma that labels bacteria for phagocytosis and directly kills them via the formation of a pore-forming complex (Membrane Attack Complex (MAC)). Currently we do not understand how complement activation results in bacterial killing. This knowledge gap is mainly caused by the lack of tools to study the enzymes that trigger MAC formation: the C5 convertases.

In my lab, we recently established a novel assay system for C5 convertases that allows us for the first time to study these enzymes under purified conditions. This model, combined with my expertise in microbiology, places my lab in a unique position to understand C5 convertase biology (Aim 1), determine the enzyme's role in MAC functioning (Aim 2) and elucidate how the MAC kills bacteria (Aim 3). Thus, I aim to provide insight into the molecular events necessary for bacterial killing by the complement system.

I will use biochemical, structural and microbiological approaches to elucidate the precise molecular arrangement of C5 convertases in vitro and on bacterial cells. I will generate unique tools to study how C5 convertases regulate MAC insertion into bacterial membranes. Finally, I will engineer fluorescent bacteria and labeled complement proteins to perform advanced microscopy analyses of how MAC kills bacteria.

These insights will lead to fundamental knowledge about the functioning of complement and will create new avenues for blocking the undesired complement activation during systemic infections and acute inflammatory processes. Furthermore this knowledge will improve desired complement activation by therapeutic antibodies and vaccination strategies in infectious diseases. Finally, this work opens up new possibilities to understand how both humans and bacteria regulate complement.

 Work performed, outcomes and results:  advancements report(s) 

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "COMBACT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "COMBACT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

E-T1IFNs (2018)

Elaboration of the type I interferonopathies

Read More  

TOUGHIT (2018)

Tough Interface Tailored Nanostructured Metals

Read More  

HEALIGRAFT (2018)

Synergistic growth factor microenvironments for veterinary bone regeneration.

Read More