Opendata, web and dolomites

FEXFEM

On a free open source extreme scale finite element software

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "FEXFEM" data sheet

The following table provides information about the project.

Coordinator
CENTRE INTERNACIONAL DE METODES NUMERICS EN ENGINYERIA 

Organization address
address: C GRAN CAPITAN, EDIFICI C1, CAMPUS NORD UPC SN
city: BARCELONA
postcode: 8034
website: www.cimne.com

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 149˙250 €
 EC max contribution 149˙250 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-PoC
 Funding Scheme ERC-POC
 Starting year 2015
 Duration (year-month-day) from 2015-03-01   to  2016-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE INTERNACIONAL DE METODES NUMERICS EN ENGINYERIA ES (BARCELONA) coordinator 149˙250.00

Map

 Project objective

The ability of scientific computing to efficiently exploit forthcoming extreme scale machines will have a great impact in almost every field of science. The next generation of exascale computers is expected to reach billions of cores. As a result, high performance scientific software able to efficiently exploit these extreme scale super-computers is strategic in this scenario. However, this target is very challenging and requires ground-breaking advances in numerical algorithms. The free open source software paradigm is the best approach for a software project of this complexity, which will require collaborative research between researchers by top-end experts in different fields. Nowadays, there are some high-quality libraries for the numerical approximation of PDEs using grid-based methods. These libraries provide the discretization/linearization machinery, leaving the numerical linear algebra to external libraries. In the future exascale scenario, this staggered approach does not seem to be the best option. The objective of this PoC proposal is to develop a Scientific Computing Library for Frontier Simulations at Extreme Scales. Our idea is to provide a high-quality open source software that combines discretization and numerical linear algebra in a strong way. We mention some of the benefits of this innovative approach that we have already identified/exploited. Extreme scale solvers will require reducing synchronization and inter-processor communications, even at the expense of extra local flops. In order to do this, (1) nonlinear domain decomposition and (2) time-space parallelization will be favoured, since there is much more local work to be done (nonlinear/time loops). . Further, (3) solver-aware discretizations should also be considered, e.g. replacing local kernel detection in domain decomposition by (consistent) boundary terms. (4) Multiphysics problems cannot be efficiently solved via black-box solvers, requiring physics-based preconditioners.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FEXFEM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FEXFEM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Neurovulnerability (2019)

Molecular mechanisms underlying selective neuronal death in motor neuron diseases

Read More  

TroyCAN (2020)

Redefining the esophageal stem cell niche – towards targeting of squamous cell carcinoma

Read More  

SuperH (2019)

Discovery and Characterization of Hydrogen-Based High-Temperature Superconductors

Read More