Opendata, web and dolomites


Nonlinear Sampled-data Attitude Stabilization of Underactuated Spacecraft

Total Cost €


EC-Contrib. €






 SAT STABILIS project word cloud

Explore the words cloud of the SAT STABILIS project. It provides you a very rough idea of what is the project "SAT STABILIS" about.

performance    never    momenta    solutions    classes    time    torques    stabilizing    continuous    finite    discontinuous    attitude    feedback    market    computer    global    ad    stabilization    axis    nonholonomic    spacecraft    mechanical    secondment    sampled    follow    inevitably    fail    mode    dictated    minimum    theoretical    safe    impose    hoc    standard    degradation    equivalent    small    digital    remaining    beginning    symmetricity    digitally    outcomes    extensive    stakeholders    kept    software    varying    industrial    multirate    angular    operation    quality    sampling    experimental    discrete    purpose    foreseen    admitting    effect    permitting    space    restrictions    platform    orbit    satellites    additional    board    underactuated    controller    redundancy    simulations    investigations    assured    actuator    computability    depending    innovative    data    destabilization    underlying    models    laws    applicability    algorithms    smooth    manifest    though    demonstration    reliability    methodology    nonlinear   

Project "SAT STABILIS" data sheet

The following table provides information about the project.


Organization address
address: Piazzale Aldo Moro 5
city: ROMA
postcode: 185

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Project website
 Total cost 180˙277 €
 EC max contribution 180˙277 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-CAR
 Starting year 2015
 Duration (year-month-day) from 2015-10-01   to  2017-09-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Space stakeholders manifest an increasing interest in small satellites dictated by reduced, global costs and “time to market”. Since redundancy is kept to a minimum, achieving attitude stabilization in actuator failure mode with the remaining control torques can offer a fail-safe operation mode, improving the reliability of the attitude control system. The, still open, underlying control problem is challenging, since the nonlinear underactuated system is nonholonomic, admitting only non-smooth stabilizing feedback. Depending on actuator type and additional restrictions on the symmetricity of the spacecraft or its angular momenta, non standard, discontinuous or time-varying solutions have been proposed. Though any continuous-time controller is inevitably implemented digitally on the on-board computer, leading to loss of performance or even destabilization, the effect of sampling is never considered in the state-of-the-art. The aim of the present proposal is to develop novel control algorithms for three-axis attitude stabilization of an underactuated spacecraft in actuator failure mode without significant performance degradation with the remaining control torques. To this purpose, we follow a sampled-data methodology that considers the sampling issues from the beginning in the design process. Theoretical investigations will be conducted for ad-hoc digital solutions based on equivalent discrete models, finite computability and multirate control laws, permitting to impose digital performance objectives that cannot be set in continuous-time. The quality of the innovative algorithms developed is assured by extensive software simulations and application on an experimental attitude control platform. In-orbit technology demonstration and testing, and exploitation of the research outcomes are the focus of the industrial secondment foreseen. The applicability of the results to general classes of underactuated mechanical systems and other related control problems is expected.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SAT STABILIS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SAT STABILIS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

DOC-Stim (2020)

Communication and rehabilitation for people with Disorders of consciousness via Brain-Computer Interfaces

Read More  

EnHydro (2019)

Entanglement measures in pilot-wave hydrodynamics

Read More  

deCrYPtion (2019)

Decrypting Mycobacterium cytochrome P450 (CYP) physiological functions by testing hypotheses emitted form large-scale comparative genomics analysis

Read More