Opendata, web and dolomites

EMCOP9CRL TERMINATED

Structural basis of Cullin-RING ligase regulation by the COP9 signalosome

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 EMCOP9CRL project word cloud

Explore the words cloud of the EMCOP9CRL project. It provides you a very rough idea of what is the project "EMCOP9CRL" about.

sites    cop9    holocomplexes    e3    powerful    opposite    ubiquitination    e2    degradation    cryoelectron    cycle    modulates    termed    microscopy    forming    accordingly    small    architecture    acts    cancer    prominent    removing    structure    substrates    stable    roles    inhibitory    500kda    progression    recognition    proteins    lt    incompletely    srs    mediated    complexes    reveal    homologue    fortunately    family    deneddylation    crl    transduction    defects    components    inactivation    confers    signalosome    cullin    multiplicity    function    fundamental    hence    light    csn    assemblies    enzymatically    core    resolution    specificity    stress    ligase    atomic    receptor    crls    complexity    crystallization    protein    mostly    sr    proteasomal    biological    apoptosis    acute    play    centred    cellular    regulation    leads    ring    plays    scaffold    near    binding    technological    subunit    associate    pathologies    cell    structures    nedd8    signal    shed    seven    catalytic    ubiquitin    lack    technique    occluded    modular    substrate    structural    mechanistic    relatively   

Project "EMCOP9CRL" data sheet

The following table provides information about the project.

Coordinator
THE INSTITUTE OF CANCER RESEARCH: ROYAL CANCER HOSPITAL 

Organization address
address: OLD BROMPTON ROAD 123
city: LONDON
postcode: SW7 3RP
website: www.icr.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.icr.ac.uk
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-10-12   to  2017-10-11

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE INSTITUTE OF CANCER RESEARCH: ROYAL CANCER HOSPITAL UK (LONDON) coordinator 183˙454.00

Map

 Project objective

The components of the Cullin-RING Ligase (CRLs) E3 ubiquitin ligase family play key roles in a wide range of cellular processes including stress response, signal transduction, apoptosis and cell cycle progression, and accordingly, defects in their function and/or regulation are prominent in many pathologies including cancer. The modular CRL architecture is centred upon one of seven different cullin scaffold proteins which associate on one side with a RING protein that acts as receptor for an E2 ligase and, on the opposite side, with a substrate receptor (SR) that confers specificity to the complex. The multiplicity of SRs allows the recognition of many different substrates by the same CRL catalytic core. CRL-mediated ubiquitination modulates the substrate´s biological activity and in many cases targets them for proteasomal degradation. The COP9 signalosome (CSN) complex plays a fundamental role in CRL regulation both by forming stable inhibitory complexes with the CRLs where the E2 ligase and substrate binding sites are occluded, and by enzymatically removing Nedd8 (a homologue of ubiquitin) from the cullin scaffold subunit, in a process termed deneddylation, that leads to inactivation of CRLs. CRL regulation by CSN is still an incompletely understood topic mostly because of the lack of high resolution CSN/CRL structures due to the challenge that the crystallization of multi-protein assemblies of such complexity represents. Fortunately, recent technological developments in another structural technique, cryoelectron microscopy, now allow structure determination of relatively small protein complexes (< 500kDa) to near-atomic resolution. Hence, we propose to use this powerful technique to reveal very high-resolution structures of several different CSN/CRL holocomplexes and shed light on the mechanistic aspects of their function.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "EMCOP9CRL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "EMCOP9CRL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MacMeninges (2019)

Control of Central Nervous Sytem inflammation by meningeal macrophages, and its impairment upon aging

Read More  

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More  

IMPRESS (2019)

Integrated Modular Power Conversion for Renewable Energy Systems with Storage

Read More