Opendata, web and dolomites

SAFE LIB

Electro-thermal modelling of lithium-ion battery packs from the safety perspective

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SAFE LIB project word cloud

Explore the words cloud of the SAFE LIB project. It provides you a very rough idea of what is the project "SAFE LIB" about.

hazards    expertise    she    libs    fellow    happen    hazard    pose    kept    onset    optimisation    gaps    escalation    sourced    thermal    packs    away    ignition    cells    ion    flammable    found    electrolyte    validate    performance    heat    overheated    lib    contain    data    reactions    imposed    cathode    requirement    predict    intends    overcharged    extreme    aid    predictive    tool    wp2    batteries    pack    concerning    single    recalls    wp4    dangerous    full    electronics    predictions    battery    airplanes    wp3    model    runaway    accompanied    combine    companies    safety    phd    transfer    dissipation    formulate    despite    bridge    electric    rupture    balancing    standards    anode    effect    theoretical    perspective    giving    explosions    vehicles    safer    explosion    host    extend    experiments    wp1    accidents    simulate    fire    generation    pressurized    recommendations    run    propensity    emphasis    materials    conduct    cell    lithium    extensive    reported   

Project "SAFE LIB" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF WARWICK 

Organization address
address: Kirby Corner Road - University House
city: COVENTRY
postcode: CV4 8UW
website: www.warwick.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website https://warwick.ac.uk/fac/sci/eng/research/grouplist/fluids/warwickfire/projects/safelib/
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-11-16   to  2017-11-15

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF WARWICK UK (COVENTRY) coordinator 195˙454.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

Lithium-ion batteries (LIB) are found in many applications such as consumer electronics, electric vehicles and airplanes. However, LIBs can be dangerous under some conditions and can pose a safety hazard since they contain a flammable electrolyte and are also kept pressurized. Despite the high safety standards being imposed and the embedded safety features, there have been many reported accidents as well as recalls done by some companies. Most accidents can be sourced to run away reactions, which could happen if the LIBs are overheated or overcharged. This is often accompanied by cell rupture and in extreme cases can lead to fire and explosions.

The Fellow has conducted her PhD on LIB run away reactions and investigated the effect different anode and cathode materials to enhance LIB safety through modelling, experiments and theoretical study of LIB cell. She will transfer such knowledge to the European host and combine with their extensive expertise in fire and explosion modelling to develop a thermal model to simulate the heat generation and dissipation within the battery pack. The research intends to bridge some important knowledge gaps concerning LIB safety and deliver a predictive tool, which can be used to enhance LIB thermal management from the safety perspective. Such a tool can aid the development of safer LIB cells and the optimisation of LIB packs balancing performance and safety requirement.

The specific objectives include: - Develop and validate a thermal model that will predict the onset of runaway reactions (WP1); - Extend the above model to predict potential ignition (WP2); - Further extend the model to predict possible escalation from a single cell ignition to potential fire and explosion hazards (WP3); - Validate the predictions with full scale test data giving particular emphasis to cell rupture and the propensity from ignition of a single cell to battery packs (WP4); and - Conduct cases studies to formulate recommendations on LIB safety.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SAFE LIB" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SAFE LIB" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

RealFlex (2019)

Real-time simulator-driver design and manufacturing based on flexible systems

Read More  

TheaTheor (2018)

Theorizing the Production of 'Comedia Nueva': The Process of Play Configuration in Spanish Golden Age Theater

Read More  

GENI (2019)

Gender, emotions and national identities: a new perspective on the abortion debates in Italy (1971-1981).

Read More