Opendata, web and dolomites


Dissecting chloroplast protein quality control specificity for rational plant reprogramming

Total Cost €


EC-Contrib. €






 ChloroQuality project word cloud

Explore the words cloud of the ChloroQuality project. It provides you a very rough idea of what is the project "ChloroQuality" about.

unfolded    chloroplasts    organisms    synergistically    transfer    chaperones    cope    shed    recognize    improvement    aggregated    misfolding    stress    coordinately    light    fundamental    regulate    expertise    lack    candidate    flexible    cover    discovering    toxic    regulated    demand    action    rational    fitness    act    independent    crop    determined    metabolism    society    quality    productivity    damage    damaged    gap    chaperone    network    salt    resistance    photosynthesis    economy    death    recycling    aggregation    signaling    heat    stresses    interactors    sessile    substrates    chloroplast    ing    refolding    biology    survival    receiving    cold    transgenic    plant    line    proteases    scientist    background    constitute    adverse    adaptors    undesirable    specificity    degraded    environmental    demands    losses    validating    improving    plants    posttranslationally    levels    proteins    drought    hsp70    alter    enzymes    molecular    food    strategies    group    engineering    little    cellular    investigation    protein    chloroplastic   

Project "ChloroQuality" data sheet

The following table provides information about the project.


Organization address
postcode: 80539

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Project website
 Total cost 159˙460 €
 EC max contribution 159˙460 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-01-01   to  2017-12-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Improving food quality, crop productivity and plant resistance to stresses are major demands of Europe’s society and economy. Plants are sessile organisms that have developed very flexible strategies to cope with adverse environmental conditions as heat, cold, drought and salt stress. These stresses cause protein misfolding and aggregation resulting in plant damage/death and productivity losses. Recycling of damaged proteins is achieved by the action of molecular chaperones. But when recycling is not possible, toxic aggregated proteins have to be degraded by the action of proteases to avoid cellular damage. Chaperones and proteases act coordinately and constitute the protein quality control system that is essential for plant survival. In plant chloroplasts, the chaperone Hsp70 is known to posttranslationally regulate important processes like photosynthesis. It is known that the specificity of Hsp70 is determined by its J-protein partners, adaptors that recognize unfolded substrates and transfer them to the chaperone for refolding. However, little is known about the target proteins of Hsp70, such that there is a large lack of information about how chloroplastic enzymes are regulated at protein levels. This knowledge is crucial for rational engineering of specific molecular pathways and plant fitness improvement. The ability to specifically alter plant metabolism without undesirable effects is a fundamental demand of European society and addresses current concerns about transgenic plants. This proposal aims to cover this gap by discovering and validating interactors of chloroplastic J-proteins. The strong background of the applicant in protein quality control and the expertise in chloroplast biology of the receiving group will synergistically contribute to shed light on the chloroplast signaling network. In addition, this project aims to develop the candidate into an independent scientist and open his own line of investigation.


year authors and title journal last update
List of publications.
2017 Nicola Zagari, Omar Sandoval-Ibañez, Niels Sandal, Junyi Su, Manuel Rodriguez-Concepcion, Jens Stougaard, Mathias Pribil, Dario Leister, Pablo Pulido
SNOWY COTYLEDON 2 Promotes Chloroplast Development and Has a Role in Leaf Variegation in Both Lotus japonicus and Arabidopsis thaliana
published pages: 721-734, ISSN: 1674-2052, DOI: 10.1016/j.molp.2017.02.009
Molecular Plant 10/5 2019-06-13
2018 Pablo Pulido, Dario Leister
Novel DNAJ-related proteins in Arabidopsis thaliana
published pages: 480-490, ISSN: 0028-646X, DOI: 10.1111/nph.14827
New Phytologist 217/2 2019-06-13

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CHLOROQUALITY" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CHLOROQUALITY" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

DISMAC-Y (2019)

State disintegration in the context of macroeconomic crisis - the case of Yugoslavia

Read More  

Extending MEDT (2019)

Extending the Molecular Electron Density Theory

Read More  

MTrill (2019)

Machine Translation Impact on Language Learning

Read More