Opendata, web and dolomites

ArtOxiZymes

Artificial Oxidation Enzymes for Highly Selective Waste Free Hydroxylation of Alkanes

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ArtOxiZymes project word cloud

Explore the words cloud of the ArtOxiZymes project. It provides you a very rough idea of what is the project "ArtOxiZymes" about.

protein    selective    society    innovative    sure    bind    efficient    pockets    bound    oxidation    plasticisers    contribution    artificial    alkanes    gain    chemocatalysts       alcohols    green    octane    bonds    recognition    lends    sustainable    oxygen    abundant    orientation    waste    mild    valuable    c8    catalysts    collaborations    energy    detergents    diversify    economy    unfavourable    contrast    chemicals    biocatalysis    c10    peroxide    position    reductions    maximise    catalysis    industries    linear    chemical    building    c1    molecular    competence    substrate    generates    direct    nature    hydrogen    substrates    economical    octan    metalloenzymes    prefunctionalized    give    oxidants    natural    relying    selectively    homogenous    itself    tremendous    reaction    creative    forming    combining    one    feedstocks    leads    researcher    functionalization    consumption    hydroxylation    materials    ol    form    blocks    mobility    interdisciplinary    correct    utilise    synthesis    unsolved   

Project "ArtOxiZymes" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS 

Organization address
address: NORTH STREET 66 COLLEGE GATE
city: ST ANDREWS
postcode: KY16 9AJ
website: www.st-andrews.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://amandajarvis.org
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-10-01   to  2017-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS UK (ST ANDREWS) coordinator 183˙454.00

Map

 Project objective

One of the major challenges facing the chemical industries is the sustainable production of chemicals from natural resources. The challenge includes making sure that chemical processes are as ‘green’ and economical as possible, and that sustainable and abundant resources are used where possible. One type of reaction that lends itself to sustainable processes is the direct functionalization of C-H to C-X (X = O, N, C) bonds, as it generates far less chemical waste and leads to tremendous reduction of energy use than methods relying on prefunctionalized materials. The objective of this project is to achieve the C1-selective hydroxylation of n-alkanes to give n-alcohols e.g. octane to octan-1-ol, using mild reaction conditions and green oxidants such as oxygen or hydrogen peroxide, which is currently an unsolved problem. Linear alcohols are of interest as they form some of the major building blocks used in the chemical industries, for example C8-C10 alcohols for the synthesis of plasticisers and detergents. We will achieve this aim by combining traditional homogenous catalysis and biocatalysis for the development of artificial metalloenzymes as catalysts, which utilise the molecular recognition concepts of nature to bind substrates selectively in protein pockets. The target substrate will thus be bound in the correct orientation enabling selective oxidation at the target position, in contrast to traditional chemocatalysts which give a highly unfavourable product distribution. This will lead to more efficient use of valuable feedstocks and large reductions in chemical waste production and energy consumption, compared to the traditional methods for forming C1-alcohols, all contributing to a green and sustainable society. The researcher will diversify her competence, build new collaborations and gain interdisciplinary mobility through this creative and highly innovative project allowing her to maximise her contribution to the knowledge-based economy and society.

 Publications

year authors and title journal last update
List of publications.
2017 Amanda G. Jarvis, Lorenz Obrecht, Peter J. Deuss, Wouter Laan, Emma K. Gibson, Peter P. Wells, Paul C. J. Kamer
Enzyme Activity by Design: An Artificial Rhodium Hydroformylase for Linear Aldehydes
published pages: 13596-13600, ISSN: 1433-7851, DOI: 10.1002/anie.201705753
Angewandte Chemie International Edition 56/44 2019-06-13

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ARTOXIZYMES" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ARTOXIZYMES" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

InBPSOC (2020)

Increases biomass production and soil organic carbon stocks with innovative cropping systems under climate change

Read More  

GLORIOUS (2019)

Digital Poetry in Today’s Russia: Canonisation and Translation

Read More  

MarshFlux (2020)

The effect of future global climate and land-use change on greenhouse gas fluxes and microbial processes in salt marshes

Read More