Opendata, web and dolomites

QuDeT SIGNED

Quantum devices in topological matter: carbon nanotubes, graphene, and novel superfluids

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 QuDeT project word cloud

Explore the words cloud of the QuDeT project. It provides you a very rough idea of what is the project "QuDeT" about.

hopg    substrate    graphene    cooled    metastable    objects    misfit    origin    layer    modified    microwave    refrigeration    formed    condensates    interactions    superfluidity    thin    nanomechanical    mesoscopic    single    nuclear    supercurrents    drastically    mechanical    besides    quality    immersion    swnts    deduce    interface    swnt    superconductivity    voltage    adiabatic    look    limit    oscillator    dislocation    atomic    below    proximity    mk    minimum    layers    circuit    materials    cooling    acts    3he    optomechanics    macroscopic    immersed    linear    graphite    phonon    suspended    facilitates    motion    carbon    reached    nanotubes    boron    quantum    introducing    fock    ensembles    phases    nitride    tunnelling    walled    topological    probed    reaching    pairing    temperature    superfluid    interfaces    intriguingly    hybrid    detectors    helium    gt    ultrasensitive    resonator    coupling    sheets    extraordinary    defects    cavity    provides    resonators    interacting    relies    object    trivial    vacuum    biased    anharmonic    excitonic    ground    gate   

Project "QuDeT" data sheet

The following table provides information about the project.

Coordinator
AALTO KORKEAKOULUSAATIO SR 

Organization address
address: OTAKAARI 1
city: ESPOO
postcode: 2150
website: http://www.aalto.fi/en/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Finland [FI]
 Total cost 2˙398˙536 €
 EC max contribution 2˙398˙536 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-ADG
 Funding Scheme ERC-ADG
 Starting year 2016
 Duration (year-month-day) from 2016-01-01   to  2020-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    AALTO KORKEAKOULUSAATIO SR FI (ESPOO) coordinator 2˙398˙536.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

The project addresses quantum devices in hybrid systems formed using carbon nanotubes, graphene, and 3He superfluid, all with particular topological characteristics. Topological properties of these non-trivial materials can be drastically modified by introducing defects or interfaces into them, like single layer graphene into superfluid helium, boron nitride between graphene sheets, carbon nanotubes in 3He superfluid, or misfit dislocation layers into HOPG graphite.

We are particularly interested in graphene/3He systems where graphene acts as an interface/substrate of interacting atomic ensembles. The atomic interactions across graphene are expected to provide novel mesoscopic condensates. By studying the topological phases of thin 3He layers and graphene immersed into superfluid 3He, we will investigate pairing across the graphene interface, deduce the origin of supercurrents, and look for excitonic superfluidity in these systems.

Single walled carbon nanotubes provide high-quality nanomechanical resonators with extraordinary properties. By using proximity-induced superconductivity, these objects will be integrated into circuit optomechanics in a way that facilitates strong coupling between the mechanical motion and the microwave cavity. By using adiabatic nuclear refrigeration, these non-linear quantum objects will be cooled below 1 mK, at the temperature of which the quantum ground state is reached. The cooling relies on immersion of the SWNT into superfluid 3He which, in the limit T -> 0, provides a quantum vacuum with unique topological properties. Intriguingly, the characteristics of this vacuum can be probed by ultrasensitive detectors provided by the suspended SWNTs.

Finally, besides non-classical phonon states, e.g. Fock states in the mechanical resonator, reaching the ground state of such an anharmonic oscillator will allow studies of quantum tunnelling of a macroscopic object from its metastable minimum when biased with a large gate voltage.

 Publications

year authors and title journal last update
List of publications.
2017 Teemu Elo, Pasi Lähteenmäki, Dmitri Golubev, Alexander Savin, Konstantin Arutyunov, Pertti Hakonen
Thermal Relaxation in Titanium Nanowires: Signatures of Inelastic Electron-Boundary Scattering in Heat Transfer
published pages: 204-216, ISSN: 0022-2291, DOI: 10.1007/s10909-017-1802-2
Journal of Low Temperature Physics 189/3-4 2019-09-30
2018 Antti Laitinen, Manohar Kumar, Pertti Hakonen, Edouard Sonin
Gyrotropic Zener tunneling and nonlinear IV curves in the zero-energy Landau level of graphene in a strong magnetic field
published pages: , ISSN: 2045-2322, DOI: 10.1038/s41598-017-18959-7
Scientific Reports 8/1 2019-09-30
2018 Antti Laitinen, Manohar Kumar, Teemu Elo, Ying Liu, T. S. Abhilash, Pertti J. Hakonen
Breakdown of Zero-Energy Quantum Hall State in Graphene in the Light of Current Fluctuations and Shot Noise
published pages: 272-287, ISSN: 0022-2291, DOI: 10.1007/s10909-018-1855-x
Journal of Low Temperature Physics 191/5-6 2019-09-30
2018 Antti Laitinen, Manohar Kumar, Pertti J. Hakonen
Weak antilocalization of composite fermions in graphene
published pages: 75113, ISSN: 2469-9950, DOI: 10.1103/PhysRevB.97.075113
Physical Review B 97/7 2019-09-30
2018 I. Todoshchenko
Finite-size effects in thermodynamics: Negative compressibility and global instability in two-phase systems
published pages: 134101, ISSN: 2469-9950, DOI: 10.1103/PhysRevB.97.134101
Physical Review B 97/13 2019-09-30
2018 Manohar Kumar, Antti Laitinen, Pertti Hakonen
Unconventional fractional quantum Hall states and Wigner crystallization in suspended Corbino graphene
published pages: , ISSN: 2041-1723, DOI: 10.1038/s41467-018-05094-8
Nature Communications 9/1 2019-09-30
2018 V. V. Zavjalov, A. M. Savin, P. J. Hakonen
Cryogenic Differential Amplifier for NMR Applications
published pages: , ISSN: 0022-2291, DOI: 10.1007/s10909-018-02130-1
Journal of Low Temperature Physics 2019-09-30

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "QUDET" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "QUDET" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

ENTRAPMENT (2019)

Septins: from bacterial entrapment to cellular immunity

Read More  

EVOCELFATE (2019)

Evolution of cell fate specification modes in spiral cleavage

Read More  

CellularLogistics (2019)

Cellular Logistics: Form, Formation and Function of the Neuronal Microtubule Cytoskeleton

Read More