Opendata, web and dolomites

MIMESIS SIGNED

Development of biomaterials through mimesis of plant defensive interfaces to fight wound infections

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MIMESIS project word cloud

Explore the words cloud of the MIMESIS project. It provides you a very rough idea of what is the project "MIMESIS" about.

anti    prone    barriers    preserves    physiological    infections    assembly    group    devastating    biopolyesters    antimicrobial    film    invasion    area    layer    determines    ubiquitous    infect    exist    places    pathogen    pathogenic    effect    microbial    provoked    plant    polymer    constitute    chronic    biofouling    cosmetics    million    ca    formulations    push    healing    diabetic    forming    regeneration    excellent    population    biological    composition    biomaterials    infection    limit    extraction    21st    crossover    breached    structure    mimicking    adhesion    defence    polyesters    lipid    hence    patients    situ    century    biocompatible    fungal    fighting    extracting    potentially    immunocompromised    broad    similarities    films    primary    skin    wounds    hampering    world    native    macromolecular    400       progress    abundant    polyester    barrier    vision    reconstituted    risk    display    fungi    plants    epidermal    opportunistic    candidate    biochemistry    combined    genetics    medicine    evidences    materials    land    shows    pathogens    position    chemical    wound    material    ex    roles    humans    inherent    combine    record    dressing   

Project "MIMESIS" data sheet

The following table provides information about the project.

Coordinator
UNIVERSIDADE NOVA DE LISBOA 

There are not information about this coordinator. Please contact Fabio for more information, thanks.

 Coordinator Country Portugal [PT]
 Project website http://www.itqb.unl.pt/research/biology/applied-and-environmental-mycology/
 Total cost 1˙795˙967 €
 EC max contribution 1˙795˙967 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-CoG
 Funding Scheme ERC-COG
 Starting year 2015
 Duration (year-month-day) from 2015-09-01   to  2020-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSIDADE NOVA DE LISBOA PT (LISBOA) coordinator 1˙795˙967.00
2    INSTITUTO DE TECNOLOGIA QUIMICA E BIOLOGICA - UNIVERSIDADE NOVA DE LISBOA PT (OEIRAS) coordinator 0.00

Map

 Project objective

Fighting microbial infection of wounds, especially in immunocompromised patients, is a major challenge in the 21st century. The skin barrier is the primary defence against microbial (opportunistic) pathogens. When this barrier is breached even non-pathogenic fungi may cause devastating infections, most of which provoked by crossover fungi able to infect both plant and humans. Hence, diabetic patients (ca. 6.4% of the world population), who are prone to develop chronic non-healing wounds, constitute a major risk group. My research is driven by the vision of mimicking the functionality of plant polyesters to develop wound dressing biomaterials that combine antimicrobial and skin regeneration properties.

Land plants have evolved through more than 400 million years, developing defence polyester barriers that limit pathogen adhesion and invasion. Biopolyesters are ubiquitous in plants and are the third most abundant plant polymer. The unique chemical composition of the plant polyester and its macromolecular assembly determines its physiological roles. This lipid-based polymer shows important similarities to the epidermal skin layer; hence it is an excellent candidate for a wound-dressing material. While evidences of their skin regeneration properties exist in cosmetics formulations and in traditional medicine, extracting polyesters from plants results in the loss of both native structure and inherent barrier properties hampering progress in this area.

We have developed a biocompatible extraction method that preserves the plant polyester film forming abilities and their inherent biological properties. The ex-situ reconstituted polyester films display the native barrier properties, including potentially broad antimicrobial and anti-biofouling effect. This, combined with our established record in fungal biochemistry/genetics, places us in a unique position to push the development of plant polyester materials to be applied in wounds, in particular diabetic chronic wounds.

 Publications

year authors and title journal last update
List of publications.
2016 Diego O. Hartmann, Marija Petkovic, Cristina Silva Pereira
Ionic Liquids as Unforeseen Assets to Fight Life-Threatening Mycotic Diseases
published pages: , ISSN: 1664-302X, DOI: 10.3389/fmicb.2016.00111
Frontiers in Microbiology 7 2019-06-06
2016 Paula C. Alves, Diego O. Hartmann, Oscar Núñez, Isabel Martins, Teresa L. Gomes, Helga Garcia, Maria Teresa Galceran, Richard Hampson, Jörg D. Becker, Cristina Silva Pereira
Transcriptomic and metabolomic profiling of ionic liquid stimuli unveils enhanced secondary metabolism in Aspergillus nidulans
published pages: , ISSN: 1471-2164, DOI: 10.1186/s12864-016-2577-6
BMC Genomics 17/1 2019-06-06

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MIMESIS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MIMESIS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Cu4Peroxide (2020)

The electrochemical synthesis of hydrogen peroxide

Read More  

CUSTOMER (2019)

Customizable Embedded Real-Time Systems: Challenges and Key Techniques

Read More  

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More