Opendata, web and dolomites

MIMESIS SIGNED

Development of biomaterials through mimesis of plant defensive interfaces to fight wound infections

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MIMESIS project word cloud

Explore the words cloud of the MIMESIS project. It provides you a very rough idea of what is the project "MIMESIS" about.

determines    lipid    prone    plant    preserves    crossover    epidermal    provoked    primary    immunocompromised    situ    fungal    opportunistic    push    world    excellent    plants    chronic    layer    pathogen    structure    antimicrobial    century    anti    infections    assembly    exist    mimicking    material    risk    polyester    similarities    formulations    healing    ca    pathogenic    potentially    pathogens    diabetic    native    shows    barriers    reconstituted    position    places    materials    genetics    extracting    evidences    invasion    films    extraction    defence    macromolecular    infect    physiological    hampering    roles    barrier    candidate    wound    ex    inherent    abundant    film    biopolyesters    composition    400    constitute    microbial    limit    breached    skin    biochemistry    devastating    fighting    polyesters    medicine    fungi    display    area    effect    biological    land    humans    million    population    record    polymer    group    combined    cosmetics    wounds    regeneration    21st    hence       adhesion    broad    dressing    biomaterials    forming    biofouling    chemical    progress    infection    biocompatible    ubiquitous    patients    combine    vision   

Project "MIMESIS" data sheet

The following table provides information about the project.

Coordinator
UNIVERSIDADE NOVA DE LISBOA 

There are not information about this coordinator. Please contact Fabio for more information, thanks.

 Coordinator Country Portugal [PT]
 Project website http://www.itqb.unl.pt/research/biology/applied-and-environmental-mycology/
 Total cost 1˙795˙967 €
 EC max contribution 1˙795˙967 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-CoG
 Funding Scheme ERC-COG
 Starting year 2015
 Duration (year-month-day) from 2015-09-01   to  2020-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSIDADE NOVA DE LISBOA PT (LISBOA) coordinator 1˙795˙967.00
2    INSTITUTO DE TECNOLOGIA QUIMICA E BIOLOGICA - UNIVERSIDADE NOVA DE LISBOA PT (OEIRAS) coordinator 0.00

Map

 Project objective

Fighting microbial infection of wounds, especially in immunocompromised patients, is a major challenge in the 21st century. The skin barrier is the primary defence against microbial (opportunistic) pathogens. When this barrier is breached even non-pathogenic fungi may cause devastating infections, most of which provoked by crossover fungi able to infect both plant and humans. Hence, diabetic patients (ca. 6.4% of the world population), who are prone to develop chronic non-healing wounds, constitute a major risk group. My research is driven by the vision of mimicking the functionality of plant polyesters to develop wound dressing biomaterials that combine antimicrobial and skin regeneration properties.

Land plants have evolved through more than 400 million years, developing defence polyester barriers that limit pathogen adhesion and invasion. Biopolyesters are ubiquitous in plants and are the third most abundant plant polymer. The unique chemical composition of the plant polyester and its macromolecular assembly determines its physiological roles. This lipid-based polymer shows important similarities to the epidermal skin layer; hence it is an excellent candidate for a wound-dressing material. While evidences of their skin regeneration properties exist in cosmetics formulations and in traditional medicine, extracting polyesters from plants results in the loss of both native structure and inherent barrier properties hampering progress in this area.

We have developed a biocompatible extraction method that preserves the plant polyester film forming abilities and their inherent biological properties. The ex-situ reconstituted polyester films display the native barrier properties, including potentially broad antimicrobial and anti-biofouling effect. This, combined with our established record in fungal biochemistry/genetics, places us in a unique position to push the development of plant polyester materials to be applied in wounds, in particular diabetic chronic wounds.

 Publications

year authors and title journal last update
List of publications.
2016 Diego O. Hartmann, Marija Petkovic, Cristina Silva Pereira
Ionic Liquids as Unforeseen Assets to Fight Life-Threatening Mycotic Diseases
published pages: , ISSN: 1664-302X, DOI: 10.3389/fmicb.2016.00111
Frontiers in Microbiology 7 2019-06-06
2016 Paula C. Alves, Diego O. Hartmann, Oscar Núñez, Isabel Martins, Teresa L. Gomes, Helga Garcia, Maria Teresa Galceran, Richard Hampson, Jörg D. Becker, Cristina Silva Pereira
Transcriptomic and metabolomic profiling of ionic liquid stimuli unveils enhanced secondary metabolism in Aspergillus nidulans
published pages: , ISSN: 1471-2164, DOI: 10.1186/s12864-016-2577-6
BMC Genomics 17/1 2019-06-06

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MIMESIS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MIMESIS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

ENTRAPMENT (2019)

Septins: from bacterial entrapment to cellular immunity

Read More  

ORGANITRA (2019)

Transport of phosphorylated compounds across lipid bilayers by supramolecular receptors

Read More  

EASY-IPS (2019)

a rapid and efficient method for generation of iPSC

Read More