Opendata, web and dolomites

MIMESIS SIGNED

Development of biomaterials through mimesis of plant defensive interfaces to fight wound infections

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MIMESIS project word cloud

Explore the words cloud of the MIMESIS project. It provides you a very rough idea of what is the project "MIMESIS" about.

antimicrobial    plants    barrier    chronic       native    combined    assembly    situ    diabetic    regeneration    crossover    extracting    group    biocompatible    biofouling    biomaterials    broad    patients    pathogens    opportunistic    fighting    exist    film    million    invasion    effect    400    progress    position    layer    physiological    polyester    fungal    push    extraction    composition    macromolecular    devastating    cosmetics    healing    evidences    population    century    polyesters    biological    genetics    hence    medicine    materials    ex    determines    land    mimicking    hampering    infect    lipid    films    infection    plant    structure    breached    infections    skin    epidermal    excellent    potentially    display    primary    wound    similarities    risk    ubiquitous    pathogenic    adhesion    defence    polymer    combine    chemical    pathogen    formulations    abundant    immunocompromised    material    vision    preserves    dressing    constitute    limit    shows    microbial    fungi    forming    prone    provoked    anti    candidate    21st    barriers    record    humans    biochemistry    wounds    ca    inherent    area    biopolyesters    reconstituted    world    places    roles   

Project "MIMESIS" data sheet

The following table provides information about the project.

Coordinator
UNIVERSIDADE NOVA DE LISBOA 

There are not information about this coordinator. Please contact Fabio for more information, thanks.

 Coordinator Country Portugal [PT]
 Project website http://www.itqb.unl.pt/research/biology/applied-and-environmental-mycology/
 Total cost 1˙795˙967 €
 EC max contribution 1˙795˙967 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-CoG
 Funding Scheme ERC-COG
 Starting year 2015
 Duration (year-month-day) from 2015-09-01   to  2020-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSIDADE NOVA DE LISBOA PT (LISBOA) coordinator 1˙795˙967.00
2    INSTITUTO DE TECNOLOGIA QUIMICA E BIOLOGICA - UNIVERSIDADE NOVA DE LISBOA PT (OEIRAS) coordinator 0.00

Map

 Project objective

Fighting microbial infection of wounds, especially in immunocompromised patients, is a major challenge in the 21st century. The skin barrier is the primary defence against microbial (opportunistic) pathogens. When this barrier is breached even non-pathogenic fungi may cause devastating infections, most of which provoked by crossover fungi able to infect both plant and humans. Hence, diabetic patients (ca. 6.4% of the world population), who are prone to develop chronic non-healing wounds, constitute a major risk group. My research is driven by the vision of mimicking the functionality of plant polyesters to develop wound dressing biomaterials that combine antimicrobial and skin regeneration properties.

Land plants have evolved through more than 400 million years, developing defence polyester barriers that limit pathogen adhesion and invasion. Biopolyesters are ubiquitous in plants and are the third most abundant plant polymer. The unique chemical composition of the plant polyester and its macromolecular assembly determines its physiological roles. This lipid-based polymer shows important similarities to the epidermal skin layer; hence it is an excellent candidate for a wound-dressing material. While evidences of their skin regeneration properties exist in cosmetics formulations and in traditional medicine, extracting polyesters from plants results in the loss of both native structure and inherent barrier properties hampering progress in this area.

We have developed a biocompatible extraction method that preserves the plant polyester film forming abilities and their inherent biological properties. The ex-situ reconstituted polyester films display the native barrier properties, including potentially broad antimicrobial and anti-biofouling effect. This, combined with our established record in fungal biochemistry/genetics, places us in a unique position to push the development of plant polyester materials to be applied in wounds, in particular diabetic chronic wounds.

 Publications

year authors and title journal last update
List of publications.
2016 Diego O. Hartmann, Marija Petkovic, Cristina Silva Pereira
Ionic Liquids as Unforeseen Assets to Fight Life-Threatening Mycotic Diseases
published pages: , ISSN: 1664-302X, DOI: 10.3389/fmicb.2016.00111
Frontiers in Microbiology 7 2019-06-06
2016 Paula C. Alves, Diego O. Hartmann, Oscar Núñez, Isabel Martins, Teresa L. Gomes, Helga Garcia, Maria Teresa Galceran, Richard Hampson, Jörg D. Becker, Cristina Silva Pereira
Transcriptomic and metabolomic profiling of ionic liquid stimuli unveils enhanced secondary metabolism in Aspergillus nidulans
published pages: , ISSN: 1471-2164, DOI: 10.1186/s12864-016-2577-6
BMC Genomics 17/1 2019-06-06

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MIMESIS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MIMESIS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

EVOCELFATE (2019)

Evolution of cell fate specification modes in spiral cleavage

Read More  

SmartForests (2020)

Smart Forests: Transforming Environments into Social-Political Technologies

Read More  

ENTRAPMENT (2019)

Septins: from bacterial entrapment to cellular immunity

Read More