Opendata, web and dolomites


Global dynamics of topoisomerase-induced DNA breaks

Total Cost €


EC-Contrib. €






 TOPOmics project word cloud

Explore the words cloud of the TOPOmics project. It provides you a very rough idea of what is the project "TOPOmics" about.

break    implications    breaks    dna    repair    cellular    tools    topoisomerase    genome    integrity   

Project "TOPOmics" data sheet

The following table provides information about the project.


Organization address
address: CALLE SERRANO 117
city: MADRID
postcode: 28006

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 2˙000˙000 €
 EC max contribution 2˙000˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-CoG
 Funding Scheme /ERC-COG
 Starting year 2015
 Duration (year-month-day) from 2015-11-01   to  2020-10-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

DNA topoisomerases are conserved nuclear enzymes that regulate DNA topology by transiently cleaving and resealing the DNA molecule, fulfilling a fundamental role in virtually every aspect of chromosome metabolism. Nevertheless, erroneous or abortive topoisomerase activity can result in persistent DNA strand breaks with the enzyme covalently attached to 3’ or 5’ DNA ends by a phosphotyrosyl bond, an anomalous structure that can compromise cell survival and/or genome integrity with the consequent implications in tumourigenesis. This peculiarity of topoisomerase catalysis also underlies the anticancer efficacy of topoisomerase poisons, which inhibit the re-ligation step of the reaction inducing the formation of DNA breaks that preferentially target highly proliferating and/or repair defective tumour cells. In addition to this link with cancer therapy, defects in the repair of topoisomerase-induced DNA damage have been linked to neurological disease. Understanding the cellular response to topoisomerase-induced breaks is therefore key for important aspects of human health, with possible implications in the development of novel diagnostic, prognostic and therapeutic tools.

This project aims at acquiring a comprehensive picture of the dynamics of topoisomerase-induced DNA breaks: from their occurrence and repair to the consequences for genome expression and integrity. We rely on the development of completely novel assays to detect and isolate the different intermediates of topoisomerase-induced break repair, and which overcome major traditional limitations in the field. These tools are subsequently used to integrate the time-dependent and genome-wide distribution of the different steps and final outcomes of the process of topoisomerase-induced DNA break repair. Furthermore, we outline original proteomic and genetic screenings to identify novel factors and pathways specifically involved the cellular response to this important type of DNA lesion.

 Work performed, outcomes and results:  advancements report(s) 

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TOPOMICS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TOPOMICS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

ChronosAntibiotics (2018)

Exploring the bacterial cell cycle to re-sensitize antibiotic-resistant bacteria

Read More  

SNICC (2018)

Studying Secondary Nucleation for the Intensification of Continuous Crystallization

Read More  

GemX (2018)

Towards a ton-scale Ge-76 observatory for neutrinoless double beta decay

Read More