Opendata, web and dolomites

MicMactin SIGNED

Dissecting active matter: Microscopic origins of macroscopic actomyosin activity

Total Cost €


EC-Contrib. €






 MicMactin project word cloud

Explore the words cloud of the MicMactin project. It provides you a very rough idea of what is the project "MicMactin" about.

consistent    theory    interactions    originate    mechanics    biological    action    bridge    collectively    relationship    original    function    collective    generating    motion    biology    interact    forces    understand    geometry    disordered    exertion    framework    separately    mechanical    tens    medium    fundamental    ing    scales    proteins    simulations    elasticity    cellular    motors    individual    assembly    force    structures    filament    close    surrounding    nanometer    gap    behaviors    micrometers    fundamentally    networks    branched    perfectly    body    break    tuned    regimes    multiscale    material    cytoskeleton    context    collaborations    models    validated    ground    nonequilibrium    motility    complete    equilibrium    cell    actin    unexplored    regulation    active    mechanically    paradigms    interacting    biochemical    macroscopic    self    cytoskeletal    controls    foundations    driving    unified    achitecture    statistical    emergence    physics    experimentally    experimental    tackle    molecular    recombine    disassembly    spanning   

Project "MicMactin" data sheet

The following table provides information about the project.


Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 1˙491˙868 €
 EC max contribution 1˙491˙868 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-STG
 Funding Scheme ERC-STG
 Starting year 2016
 Duration (year-month-day) from 2016-06-01   to  2021-05-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

'Biological motion and forces originate from mechanically active proteins operating at the nanometer scale. These individual active elements interact through the surrounding cellular medium, collectively generating structures spanning tens of micrometers whose mechanical properties are perfectly tuned to their fundamentally out-of-equilibrium biological function. While both individual proteins and the resulting cellular behaviors are well characterized, understanding the relationship between these two scales remains a major challenge in both physics and cell biology.

We will bridge this gap through multiscale models of the emergence of active material properties in the experimentally well-characterized actin cytoskeleton. We will thus investigate unexplored, strongly interacting nonequilibrium regimes. We will develop a complete framework for cytoskeletal activity by separately studying all three fundamental processes driving it out of equilibrium: actin filament assembly and disassembly, force exertion by branched actin networks, and the action of molecular motors. We will then recombine these approaches into a unified understanding of complex cell motility processes.

To tackle the cytoskeleton's disordered geometry and many-body interactions, we will design new nonequilibrium self consistent methods in statistical mechanics and elasticity theory. Our findings will be validated through simulations and close experimental collaborations.

Our work will break new ground in both biology and physics. In the context of biology, it will establish a new framework to understand how the cell controls its achitecture and mechanics through biochemical regulation. On the physics side, it will set up new paradigms for the emergence of original out-of-equilibrium collective behaviors in an experimentally well-characterized system, addressing the foundations of existing macroscopic 'active matter' approaches.'


year authors and title journal last update
List of publications.
2017 Florian Rückerl, Martin Lenz, Timo Betz, John Manzi, Jean-Louis Martiel, Mahassine Safouane, Rajaa Paterski-Boujemaa, Laurent Blanchoin, Cécile Sykes
Adaptive Response of Actin Bundles under Mechanical Stress
published pages: 1072-1079, ISSN: 0006-3495, DOI: 10.1016/j.bpj.2017.07.017
Biophysical Journal 113/5 2019-07-08
2016 Giulia Foffano, Nicolas Levernier, Martin Lenz
The dynamics of filament assembly define cytoskeletal network morphology
published pages: 13827, ISSN: 2041-1723, DOI: 10.1038/ncomms13827
Nature Communications 7 2019-07-08
2016 Pierre Ronceray, Chase P. Broedersz, Martin Lenz
Fiber networks amplify active stress
published pages: 2827-2832, ISSN: 0027-8424, DOI: 10.1073/pnas.1514208113
Proceedings of the National Academy of Sciences 113/11 2019-07-08
2018 Cao, Luyan; Kerleau, Mikael; Suzuki, Emiko L.; Wioland, Hugo; Jouet, Sandy; Guichard, Berengere; Lenz, Martin; Romet-Lemonne, Guillaume; Jegou, Antoine
Modulation of formin processivity by profilin and mechanical tension
published pages: e34176, ISSN: 2050-084X, DOI: 10.1101/235333
eLife 7 2019-02-28
2019 Pierre Ronceray, Chase P. Broedersz, Martin Lenz
Fiber plucking by molecular motors yields large emergent contractility in stiff biopolymer networks
published pages: , ISSN: 1744-683X, DOI: 10.1039/c8sm00979a
Soft Matter 2019-02-28
2018 Yu Long Han, Pierre Ronceray, Guoqiang Xu, Andrea Malandrino, Roger D. Kamm, Martin Lenz, Chase P. Broedersz, Ming Guo
Cell contraction induces long-ranged stress stiffening in the extracellular matrix
published pages: 4075-4080, ISSN: 0027-8424, DOI: 10.1073/pnas.1722619115
Proceedings of the National Academy of Sciences 115/16 2019-02-28
2018 Ananyo Maitra, Pragya Srivastava, M. Cristina Marchetti, Juho S. Lintuvuori, Sriram Ramaswamy, Martin Lenz
A nonequilibrium force can stabilize 2D active nematics
published pages: 6934-6939, ISSN: 0027-8424, DOI: 10.1073/pnas.1720607115
Proceedings of the National Academy of Sciences 115/27 2019-02-28
2019 Pierre Ronceray, Chase P. Broedersz, Martin Lenz
Stress-dependent amplification of active forces in nonlinear elastic media
published pages: 331-338, ISSN: 1744-683X, DOI: 10.1039/c8sm00949j
Soft Matter 15/2 2019-02-12

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MICMACTIN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MICMACTIN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

NanoPD_P (2020)

High throughput multiplexed trace-analyte screening for diagnostics applications

Read More  

InsideChromatin (2019)

Towards Realistic Modelling of Nucleosome Organization Inside Functional Chromatin Domains

Read More  


The Enemy of the Good: Towards a Theory of Moral Progress

Read More