Opendata, web and dolomites

TIMEnzyme SIGNED

Implementation of Enzymatic Activity in a Naïve, de novo Designed Protein Scaffold by Rational Design and Laboratory Evolution

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 TIMEnzyme project word cloud

Explore the words cloud of the TIMEnzyme project. It provides you a very rough idea of what is the project "TIMEnzyme" about.

kemp    na    microfluidics    kindly    designed    usually    million    appropriate    reaction    diversely    stereospecific    fluorescence    variant    university    abundant    insert    ve    binding    evolution    round    aldolases    arrangements    eliminase    dimeric    prof    laboratory    iuml    minimalist    plan    bond    extended    tim    carbon    strategies    utilized    libraries    tool    region    barrels    clones    catalytic    randomized    setup    industry    screen    functionalized    first    pocket    contains    prospective    scope    covalent    catalyze    protein    formed    dependent    previously    interface    novo    aldolase    medicine    enzymes    implementing    found    fundamental    loop    scaffold    cofactor    david    deduced    unbiased    equip    implanted    retro    generate    barrel    model    site    broaden    simplified    active    artificial    synthetic    library    dimer    enzymatic    washington    dna    computationally    independent    fold    de    fragments    baker    ultimately    natural    substrate   

Project "TIMEnzyme" data sheet

The following table provides information about the project.

Coordinator
EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH 

Organization address
address: Raemistrasse 101
city: ZUERICH
postcode: 8092
website: https://www.ethz.ch/de.html

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 175˙419 €
 EC max contribution 175˙419 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-03-01   to  2018-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH CH (ZUERICH) coordinator 175˙419.00

Map

 Project objective

The proposed research project aims at implementing enzymatic activity in a de novo designed, unbiased protein scaffold. First, simplified active site arrangements deduced from two previously evolved model enzymes (Kemp eliminase and retro-aldolase) will be implanted in the scaffold. This will allow evaluating the extent to which a fully computationally designed and naïve protein can be functionalized and evolved. A recently established fluorescence-based microfluidics setup will be utilized to screen large DNA libraries of several million clones per round of laboratory evolution. The artificial protein scaffold, kindly provided by Prof. David Baker (University of Washington), has been designed to adopt a minimalist TIM barrel fold, which is the most abundant and diversely evolved protein fold found for natural enzymes. Here, the substrate binding pocket is usually formed by an extended loop region on one side of the scaffold, which is not yet present in the naïve, designed variant. Thus, in the second step, I will generate a randomized library of loop fragments, insert into the scaffold and screen for improved activity. This approach can be extended from the retro-aldolase model reaction towards synthetic aldolases that catalyze the stereospecific formation of a new carbon-carbon bond. Ultimately, the aim is to evaluate whether loop libraries are an appropriate tool to broaden the substrate scope of these enzymes. Furthermore, the proposal contains a second, independent approach to equip the artificial scaffold with novel enzymatic functionality. Here, I plan to design a covalent dimer of two artificial TIM barrels carrying a cofactor-dependent active site in the dimeric interface. This work will not only generate fundamental insight into the evolution of catalytic activity, it also has great potential to contribute to the development of general strategies for creating enzymes with novel functionality, and thus, prospective applications in industry or medicine.

 Publications

year authors and title journal last update
List of publications.
2016 Richard Obexer, Moritz Pott, Cathleen Zeymer, Andrew D. Griffiths, Donald Hilvert
Efficient laboratory evolution of computationally designed enzymes with low starting activities using fluorescence-activated droplet sorting
published pages: 355-366, ISSN: 1741-0126, DOI: 10.1093/protein/gzw032
Protein Engineering Design and Selection 29/9 2019-06-13
2017 Cathleen Zeymer, Reinhard Zschoche, Donald Hilvert
Optimization of Enzyme Mechanism along the Evolutionary Trajectory of a Computationally Designed (Retro-)Aldolase
published pages: 12541-12549, ISSN: 0002-7863, DOI: 10.1021/jacs.7b05796
Journal of the American Chemical Society 139/36 2019-06-13

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TIMENZYME" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TIMENZYME" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

STIMOS (2019)

Stimulation of Multiple Organoids Simultaneously

Read More  

BirthControlEnvirons (2019)

Contraception meets the environment: everyday contraceptive practices, politics, and futures in a toxic age

Read More  

MarshFlux (2020)

The effect of future global climate and land-use change on greenhouse gas fluxes and microbial processes in salt marshes

Read More