Opendata, web and dolomites

EYEPOD

The vision-strike conversion: Neural control of the predatory strike behavior in stomatopods

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 EYEPOD project word cloud

Explore the words cloud of the EYEPOD project. It provides you a very rough idea of what is the project "EYEPOD" about.

stimuli    basis    anticipatory    am    utilizes    behavioural    ballistic    manner    ecologist    catching    uniquely    neuroscience    space    observation    processed    humans    techniques    line    fill    bellido    electrophysiological    qualified    form    releasing    strikes    initiate    fastest    stomatopods    few    survival    host    paloma    experts    process    arthropods    coded    controlling    re    propelled    gap    dimensions    ball    neural    fundamental    paramount    insects    conversion    feedback    events    themes    world    yield    sensory    predatory    questions    predictive    proprioceptive    controls    confirm    boasted    histological    fast    movements    influence    decision    movement    circuits    nervous    correct    supervisor    actuated    vision    performance    expertise    period    leader    insights    incoming    question    species    earth    body    stomatopod    gonzalez    animals    appropriate    ecology    purpose    sensorimotor    anticipated    investigations    behaviors    visual    limited    strike    combination   

Project "EYEPOD" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.katefeller.com
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-08-01   to  2018-09-05

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 195˙454.00

Map

 Project objective

Controlling how the body is propelled through space is paramount for survival of most animals. Many species, including humans, use feedback from their visual and proprioceptive systems to correct or confirm body movements. However, feedback is limited to events that form part of the past. For many high performance behaviors, such as catching a fast incoming ball, the appropriate movement must be 1. anticipated from a short observation period and 2. actuated without sensory feedback. Understanding how visual information is processed and re-coded in a predictive manner for the purpose of movement implementation is a fundamental question in neuroscience. Such ballistic movements have been studied in predatory species, however previous investigations on the neural basis of such behaviour focus on the early circuits. Much less is known about the sensorimotor conversion of this behaviour. Here I propose to investigate the sensorimotor control of the fastest predatory strike on earth, boasted by stomatopods. This work will yield novel insights and fill the current knowledge gap on the neural basis of anticipatory and ballistic movements. As one of the few world experts in the field of stomatopod visual ecology, I am uniquely qualified to initiate this line of research. This project utilizes both my expertise as a stomatopod visual ecologist and the expertise of my host supervisor, Paloma Gonzalez-Bellido, who is a leader in the use of behavioural, histological, and electrophysiological techniques to study sensorimotor conversion in predatory insects. Using a combination of our expertise, I will address three specific questions related to the vision-strike conversion in the stomatopod nervous system: 1.) What are the neural controls for releasing stomatopod ballistic strikes? 2.) Which dimensions of visual stimuli influence the stomatopod strike decision-making process? 3.) What are common themes among arthropods for the neural control of anticipatory movements?

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "EYEPOD" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "EYEPOD" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

G20LAP (2019)

G20 Legitimacy and Policymaking

Read More  

CRAS (2019)

Climate change and Resilience of Agricultural System: an econometric and computational analysis

Read More  

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More