Opendata, web and dolomites


Quantum simulation of transport properties in arbitrary shaped potential landscapes with ultracold bosonic atoms

Total Cost €


EC-Contrib. €






 BosQuanTran project word cloud

Explore the words cloud of the BosQuanTran project. It provides you a very rough idea of what is the project "BosQuanTran" about.

basic    transport    rapid    provides    difficult    degeneracy    area    insulators    circuits    input    candidates    examples    carriers    observations    temperatures    imaging    experiments    realizing    techniques    possibility    bosonic    phases    of    prominent    numerical    interesting    interaction    governed    laboratories    analog    magnetic    environment    cooled    decoupled    handle    combination    perform    fractional    disorder    solid    artificial    door    geometries    potentially    good    constituents    tc    limitations    stimulating    initiated    charge    dimensionality    trapping    interactions    progress    topological    advantage    quantum    small    mechanical    simulations    geometry    closed    fermionic    hall    explored    plays    ultracold    externally    dimensions    engineered    intriguing    ultra    overcome    condensed    atoms    superconductors    subsequently    phenomena    probes    computationally    model    electronic    reported    atomtronics    resolution    optical    dynamically    approximation    potentials    designing    varied    engineering    confined    amount    idea   

Project "BosQuanTran" data sheet

The following table provides information about the project.


Organization address
city: PARIS
postcode: 75005

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 185˙076 €
 EC max contribution 185˙076 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-03-01   to  2018-02-28


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    COLLEGE DE FRANCE FR (PARIS) coordinator 185˙076.00


 Project objective

In solid state systems transport experiments are among the most important probes to investigate the properties of different phases of matter. A number of intriguing observations have been reported where the interaction between the charge carriers plays a significant role. One of the most prominent examples currently explored in the laboratories are high-Tc superconductors and fractional-quantum-Hall insulators. Quantum-mechanical systems whose properties are governed by the interaction between its constituents are computationally difficult to handle. In most cases numerical results can only be obtained for small systems or in reduced dimensions. One possibility to overcome these limitations is to perform analog quantum simulations with ultracold atoms. The basic idea behind these experiments is to built artificial model systems using the bottom-up approach: Bosonic and fermionic atoms are cooled to ultra-low temperatures to reach quantum degeneracy. Subsequently the atoms are confined in engineered magnetic and optical potentials realizing closed quantum systems that are, to a good approximation, decoupled from their environment. This approach has the advantage that the system parameters such as interactions, dimensionality, geometry or the amount of disorder can be controlled externally and even varied dynamically. The rapid progress in this research area makes them promising candidates to provide stimulating input on current condensed matter problems. It initiated a whole new field known as atomtronics, which aims at designing electronic-like circuits with potentially interesting applications. Recently developed techniques allow for an engineering of tailored trapping geometries and high-resolution imaging, which provides new insight in the study of quantum transport. In combination with the recent success in realizing artificial magnetic fields, these techniques open the door to future studies of topological transport phenomena.


year authors and title journal last update
List of publications.
2017 J. L. Ville, T. Bienaimé, R. Saint-Jalm, L. Corman, M. Aidelsburger, L. Chomaz, K. Kleinlein, D. Perconte, S. Nascimbène, J. Dalibard, J. Beugnon
Loading and compression of a single two-dimensional Bose gas in an optical accordion
published pages: , ISSN: 2469-9926, DOI: 10.1103/PhysRevA.95.013632
Physical Review A 95/1 2019-07-26
2017 M. Aidelsburger, J. L. Ville, R. Saint-Jalm, S. Nascimbène, J. Dalibard, J. Beugnon
Merging N independent condensates: Disentangling the Kibble-Zurek mechanism
published pages: , ISSN: , DOI:
arXiv preprint 2019-07-26

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BOSQUANTRAN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BOSQUANTRAN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

DEF2DEV (2019)

Identification of the mode of action of plant defensins during root development and plant defense responses.

Read More  

MBL-Fermions (2020)

Probing many-body localization dynamics using ultracold fermions in an optical lattice

Read More  

LEANOR (2019)

Detecting Low-Energy Astrophysical Neutrinos with KM3NeT/ORCA: the Transient Neutrino Sky at the GeV Scale

Read More