Opendata, web and dolomites

BosQuanTran

Quantum simulation of transport properties in arbitrary shaped potential landscapes with ultracold bosonic atoms

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 BosQuanTran project word cloud

Explore the words cloud of the BosQuanTran project. It provides you a very rough idea of what is the project "BosQuanTran" about.

atoms    probes    ultracold    interactions    electronic    intriguing    provides    stimulating    rapid    computationally    externally    constituents    imaging    environment    perform    bosonic    numerical    difficult    model    experiments    mechanical    combination    trapping    ultra    insulators    quantum    cooled    approximation    tc    small    fermionic    limitations    engineered    amount    handle    dimensions    interesting    transport    analog    possibility    artificial    reported    phases    of    prominent    decoupled    temperatures    overcome    atomtronics    superconductors    disorder    confined    door    dynamically    condensed    closed    initiated    geometry    hall    designing    simulations    governed    engineering    area    circuits    dimensionality    solid    resolution    basic    techniques    input    explored    interaction    plays    fractional    potentially    carriers    topological    observations    varied    magnetic    subsequently    charge    realizing    potentials    candidates    progress    degeneracy    geometries    advantage    laboratories    good    phenomena    idea    optical    examples   

Project "BosQuanTran" data sheet

The following table provides information about the project.

Coordinator
COLLEGE DE FRANCE 

Organization address
address: PLACE MARCELIN BERTHELOT 11
city: PARIS
postcode: 75005
website: www.college-de-france.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 185˙076 €
 EC max contribution 185˙076 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-03-01   to  2018-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    COLLEGE DE FRANCE FR (PARIS) coordinator 185˙076.00

Map

 Project objective

In solid state systems transport experiments are among the most important probes to investigate the properties of different phases of matter. A number of intriguing observations have been reported where the interaction between the charge carriers plays a significant role. One of the most prominent examples currently explored in the laboratories are high-Tc superconductors and fractional-quantum-Hall insulators. Quantum-mechanical systems whose properties are governed by the interaction between its constituents are computationally difficult to handle. In most cases numerical results can only be obtained for small systems or in reduced dimensions. One possibility to overcome these limitations is to perform analog quantum simulations with ultracold atoms. The basic idea behind these experiments is to built artificial model systems using the bottom-up approach: Bosonic and fermionic atoms are cooled to ultra-low temperatures to reach quantum degeneracy. Subsequently the atoms are confined in engineered magnetic and optical potentials realizing closed quantum systems that are, to a good approximation, decoupled from their environment. This approach has the advantage that the system parameters such as interactions, dimensionality, geometry or the amount of disorder can be controlled externally and even varied dynamically. The rapid progress in this research area makes them promising candidates to provide stimulating input on current condensed matter problems. It initiated a whole new field known as atomtronics, which aims at designing electronic-like circuits with potentially interesting applications. Recently developed techniques allow for an engineering of tailored trapping geometries and high-resolution imaging, which provides new insight in the study of quantum transport. In combination with the recent success in realizing artificial magnetic fields, these techniques open the door to future studies of topological transport phenomena.

 Publications

year authors and title journal last update
List of publications.
2017 J. L. Ville, T. Bienaimé, R. Saint-Jalm, L. Corman, M. Aidelsburger, L. Chomaz, K. Kleinlein, D. Perconte, S. Nascimbène, J. Dalibard, J. Beugnon
Loading and compression of a single two-dimensional Bose gas in an optical accordion
published pages: , ISSN: 2469-9926, DOI: 10.1103/PhysRevA.95.013632
Physical Review A 95/1 2019-07-26
2017 M. Aidelsburger, J. L. Ville, R. Saint-Jalm, S. Nascimbène, J. Dalibard, J. Beugnon
Merging N independent condensates: Disentangling the Kibble-Zurek mechanism
published pages: , ISSN: , DOI:
arXiv preprint 2019-07-26

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BOSQUANTRAN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BOSQUANTRAN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

TOPOCIRCUS (2019)

Simulations of Topological Phases in Superconducting Circuits

Read More  

CoCoNat (2019)

Coordination in constrained and natural distributed systems

Read More  

ReSOLeS (2019)

New Reconfigurable Spectrum Optical Fibre Laser Sources

Read More