Opendata, web and dolomites


Quantum simulation of transport properties in arbitrary shaped potential landscapes with ultracold bosonic atoms

Total Cost €


EC-Contrib. €






 BosQuanTran project word cloud

Explore the words cloud of the BosQuanTran project. It provides you a very rough idea of what is the project "BosQuanTran" about.

of    resolution    ultracold    difficult    techniques    good    trapping    designing    candidates    insulators    examples    condensed    dimensionality    computationally    amount    temperatures    transport    rapid    combination    laboratories    optical    dimensions    bosonic    small    plays    experiments    area    engineered    closed    interaction    interactions    simulations    potentials    limitations    subsequently    possibility    electronic    governed    circuits    fermionic    imaging    atoms    input    potentially    phases    environment    approximation    fractional    artificial    degeneracy    externally    ultra    charge    geometry    handle    magnetic    mechanical    basic    prominent    engineering    topological    door    geometries    superconductors    cooled    realizing    disorder    stimulating    advantage    constituents    dynamically    carriers    model    intriguing    progress    confined    observations    idea    reported    probes    analog    initiated    phenomena    tc    hall    interesting    numerical    solid    overcome    varied    quantum    atomtronics    provides    explored    perform    decoupled   

Project "BosQuanTran" data sheet

The following table provides information about the project.


Organization address
city: PARIS
postcode: 75005

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 185˙076 €
 EC max contribution 185˙076 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-03-01   to  2018-02-28


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    COLLEGE DE FRANCE FR (PARIS) coordinator 185˙076.00


 Project objective

In solid state systems transport experiments are among the most important probes to investigate the properties of different phases of matter. A number of intriguing observations have been reported where the interaction between the charge carriers plays a significant role. One of the most prominent examples currently explored in the laboratories are high-Tc superconductors and fractional-quantum-Hall insulators. Quantum-mechanical systems whose properties are governed by the interaction between its constituents are computationally difficult to handle. In most cases numerical results can only be obtained for small systems or in reduced dimensions. One possibility to overcome these limitations is to perform analog quantum simulations with ultracold atoms. The basic idea behind these experiments is to built artificial model systems using the bottom-up approach: Bosonic and fermionic atoms are cooled to ultra-low temperatures to reach quantum degeneracy. Subsequently the atoms are confined in engineered magnetic and optical potentials realizing closed quantum systems that are, to a good approximation, decoupled from their environment. This approach has the advantage that the system parameters such as interactions, dimensionality, geometry or the amount of disorder can be controlled externally and even varied dynamically. The rapid progress in this research area makes them promising candidates to provide stimulating input on current condensed matter problems. It initiated a whole new field known as atomtronics, which aims at designing electronic-like circuits with potentially interesting applications. Recently developed techniques allow for an engineering of tailored trapping geometries and high-resolution imaging, which provides new insight in the study of quantum transport. In combination with the recent success in realizing artificial magnetic fields, these techniques open the door to future studies of topological transport phenomena.


year authors and title journal last update
List of publications.
2017 J. L. Ville, T. Bienaimé, R. Saint-Jalm, L. Corman, M. Aidelsburger, L. Chomaz, K. Kleinlein, D. Perconte, S. Nascimbène, J. Dalibard, J. Beugnon
Loading and compression of a single two-dimensional Bose gas in an optical accordion
published pages: , ISSN: 2469-9926, DOI: 10.1103/PhysRevA.95.013632
Physical Review A 95/1 2019-07-26
2017 M. Aidelsburger, J. L. Ville, R. Saint-Jalm, S. Nascimbène, J. Dalibard, J. Beugnon
Merging N independent condensates: Disentangling the Kibble-Zurek mechanism
published pages: , ISSN: , DOI:
arXiv preprint 2019-07-26

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BOSQUANTRAN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BOSQUANTRAN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

FOCUSIS (2020)

Focal volume Control Using Structured Illumination Sources

Read More  

MathematicsAnalogies (2019)

Mathematics Analogies

Read More  

ToMComputations (2019)

How other minds are represented in the human brain: Neural computations underlying Theory of Mind

Read More