Opendata, web and dolomites


RNAi-mediated Epigenetic Gene Regulation

Total Cost €


EC-Contrib. €






 REpiReg project word cloud

Explore the words cloud of the REpiReg project. It provides you a very rough idea of what is the project "REpiReg" about.

rnai    additional    outstanding    synthetic    mechanism    impedes    possibility    discovered    gene    decade    perform    nucleases    foundation    genetic    epigenetic    single    dissection    edge    silence    epigenome    critical    elucidate    organisms    mammalian    difficult    chromatin    regulation    fundamental    genome    epigenetics    yeast    acting    embryonic    questions    link    combined    mechanistic    fortunate    controversy    consists    chemical    refers    cutting    components    principles    trigger    suppressive    editing    beginning    novo    unanswered    phenomenon    screens    surprising    counter    directed    mutagenesis    heterochromatin    rnas    intriguing    direct    sparked    regulatory    fragments    proteomics    sequencing    de    small    expression    gaps    close    conserved    stem    initiation    ago    hampered    cells    rna    constitutes    engineered    experiments    exogenously    inherently    mediated    systematic    builds    mouse    eukaryotic    technologies    sequences    employ    cell    missing    homologous    conservation    sirnas    trans    fission    endogenous    modifications   

Project "REpiReg" data sheet

The following table provides information about the project.


Organization address
city: BASEL
postcode: 4058

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Project website
 Total cost 1˙998˙557 €
 EC max contribution 1˙998˙557 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-CoG
 Funding Scheme ERC-COG
 Starting year 2017
 Duration (year-month-day) from 2017-01-01   to  2021-12-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

RNAi refers to the ability of small RNAs to silence expression of homologous sequences. A surprising link between epigenetics and RNAi was discovered more than a decade ago, and I was fortunate enough to be involved in this exciting field of research from the beginning. It is now well established that endogenous small RNAs have a direct impact on the genome in various organisms. Yet, the initiation of chromatin modifications in trans by exogenously introduced small RNAs has been inherently difficult to achieve in all eukaryotic cells. This has sparked controversy about the importance and conservation of RNAi-mediated epigenome regulation and hampered systematic mechanistic dissection of this phenomenon. Using fission yeast, we have discovered a counter-acting mechanism that impedes small RNA-directed formation of heterochromatin and constitutes the foundation of this proposal. Our goal is to close several knowledge gaps and test the intriguing possibility that the suppressive mechanism we discovered is conserved in mammalian cells. We will employ yeast and embryonic stem cells and use cutting-edge technologies (i.e., chemical mutagenesis combined with whole-genome sequencing, genome editing with engineered nucleases, and single-cell RNA sequencing) to address fundamental, as yet unanswered questions. My proposal consists of four major aims. In aim 1, I propose to use proteomics approaches and to perform yeast genetic screens to define additional pathway components and regulatory factors. Aim 2 builds on our ability to finally trigger de novo formation of heterochromatin by synthetic siRNAs acting in trans, addressing many of the outstanding mechanistic questions that could not be addressed in the past. In Aims 3 and 4, experiments conducted in yeast and mouse cells will elucidate missing fragments critical to our understanding of the conserved principles behind RNAi-mediated epigenetic gene regulation.


year authors and title journal last update
List of publications.
2016 Yukiko Shimada, Fabio Mohn, Marc Bühler
The RNA-induced transcriptional silencing complex targets chromatin exclusively via interacting with nascent transcripts
published pages: 2571-2580, ISSN: 0890-9369, DOI: 10.1101/gad.292599.116
Genes & Development 30/23 2019-06-18
2017 Valentin Flury, Paula Raluca Georgescu, Vytautas Iesmantavicius, Yukiko Shimada, Tahsin Kuzdere, Sigurd Braun, Marc B?hler
The Histone Acetyltransferase Mst2 Protects Active Chromatin from Epigenetic Silencing by Acetylating the Ubiquitin Ligase Brl1
published pages: , ISSN: 1097-2765, DOI: 10.1016/j.molcel.2017.05.026
Molecular Cell 2019-06-18
2019 Lea Duempelmann, Fabio Mohn, Yukiko Shimada, Daniele Oberti, Aude Andriollo, Silke Lochs, Marc Bühler
Inheritance of a Phenotypically Neutral Epimutation Evokes Gene Silencing in Later Generations
published pages: 534-541.e4, ISSN: 1097-2765, DOI: 10.1016/j.molcel.2019.02.009
Molecular Cell 74/3 2019-08-30

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "REPIREG" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "REPIREG" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

InsideChromatin (2019)

Towards Realistic Modelling of Nucleosome Organization Inside Functional Chromatin Domains

Read More  

EVOMENS (2020)

The evolution of menstruation in primates

Read More  


The Mass Politics of Disintegration

Read More