Opendata, web and dolomites

Protoeukaryotes

Multicompartmental Designs For Protocells

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Protoeukaryotes project word cloud

Explore the words cloud of the Protoeukaryotes project. It provides you a very rough idea of what is the project "Protoeukaryotes" about.

edge    responsive    parallel    made    interacting    kumar    protocell    issue    exists    detoxification    artificial    protocells    group    micromachines    exhibiting    nanochannels    models    protocellular    feedback    compartments    networks    disciplinary    bristol    tremendous    frs    model    living    regard    leadership    harvesting    cells    enabled    prof    interaction    broadened    multicompartmental    homeostasis    clinical    life    perceived    hosting    selective    cellular    metabolites    polymers    remote    apart    membranes    stephen    organization    programmed    literature    metabolite    dr    transport    levels    exchange    self    sensing    expertise    ing    functions    function    environment    structural    species    cutting    perform    regulation    diagnosis    origin    pavan    membrane    few    locomotion    quintessential    university    last    construction    mimics    complexity    hierarchical    gates    constructing    mann    light    replication    organelles    compartment    stimuli    progress    drug    smart    eukaryotic    bound    compartmentalization    date    chemical    activate    minimal   

Project "Protoeukaryotes" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF BRISTOL 

Organization address
address: BEACON HOUSE QUEENS ROAD
city: BRISTOL
postcode: BS8 1QU
website: www.bristol.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-09-01   to  2018-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF BRISTOL UK (BRISTOL) coordinator 183˙454.00

Map

 Project objective

Protocells are artificial mimics of cellular systems exhibiting some of the quintessential characteristics of living systems such as compartmentalization, replication and selective exchange of chemical species with the environment. Apart from enabling better understanding about the origin of life, protocells can also be perceived as micromachines which can be programmed to perform functions such as clinical diagnosis, drug delivery, remote sensing, environment detoxification, etc. The range of applications for protocells can be broadened by increasing their structural complexity which would enable complex functions. However, to date the structural complexity of protocellular models has been minimal. Eukaryotic cells are model systems for complexity with compartmentalization into membrane bound organelles interacting through selective exchange of metabolites resulting in complex chemical networks which make possible smart functions such as feedback regulation and homeostasis. No parallel of this hierarchical organization exists in protocell literature. The aim of this proposal is to address this issue by design and construction of multicompartmental protocell models capable of complex functions such as self-regulation, locomotion and light harvesting. The interaction between the various compartments will be enabled by constructing gates across their membranes using stimuli responsive polymers to allow compartments to activate pathways which can affect the function or metabolite level of another compartment, leading to self-regulation of function or metabolite levels in the protocell. It is in this regard that the previous expertise of the applicant (Dr. Pavan Kumar) in constructing gates to control the transport in nanochannels will be applied to the multi-disciplinary and cutting edge field of protocells in which the hosting group at the University of Bristol (under the leadership of Prof.Stephen Mann FRS) has made tremendous progress in the last few years.

 Publications

year authors and title journal last update
List of publications.
2018 B. V. V. S. Pavan Kumar, James Fothergill, Joshua Bretherton, Liangfei Tian, Avinash J. Patil, Sean A. Davis, Stephen Mann
Chloroplast-containing coacervate micro-droplets as a step towards photosynthetically active membrane-free protocells
published pages: 3594-3597, ISSN: 1359-7345, DOI: 10.1039/C8CC01129J
Chemical Communications 54/29 2019-05-10
2018 B. V. V. S. Pavan Kumar, Avinash J. Patil, Stephen Mann
Enzyme-powered motility in buoyant organoclay/DNA protocells
published pages: 1154-1163, ISSN: 1755-4330, DOI: 10.1038/s41557-018-0119-3
Nature Chemistry 10/11 2019-05-10

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PROTOEUKARYOTES" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PROTOEUKARYOTES" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CYBERSECURITY (2018)

Cyber Security Behaviours

Read More  

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

LUNG-BIM (2019)

Induction of B cell immunity in the lung mucosa

Read More