Opendata, web and dolomites

LENSD

Liquid Exfoliation of Nanomaterials using Spinning Discs

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 LENSD project word cloud

Explore the words cloud of the LENSD project. It provides you a very rough idea of what is the project "LENSD" about.

broaden    decade    aligned    nanoscale    energy    material    investigation    liquid    boron    researcher    defects    personalised    disulfide    fellowship    flows    insufficient    flow    yield    actions    layer    introduction    multiple    intensification    thin    films    nitride    inter    mobility    fluid    engineering    technologies    mono    nanosheet    exfoliation    disc    opto    rates    numerical    phenomena    create    expertise    biggest    few    speed    spinning    holistic    chemical    multiphase    demonstrated    society    thermal    received    limitations    london    receive    simulating    optical    lt    image    assist    disciplines    graphene    extensive    industrial    materials    microscopy    mechanics    particle    career    imperial    dimensional    remarkable    college    scalable    infrared    cooperation    sustainable    poor    electronics    experimentally    interfacial    molybdenum    continuous    complimentary    shear    nanomaterials    numerically    size    2d    nanotechnology    frequently    techniques    imagery    sectoral    transport    velocimetry    thermography    training    wt    experiments    two   

Project "LENSD" data sheet

The following table provides information about the project.

Coordinator
IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE 

Organization address
address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ
website: http://www.imperial.ac.uk/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-01-09   to  2019-01-08

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE UK (LONDON) coordinator 195˙454.00

Map

 Project objective

Two-dimensional (2D) nanomaterials have received significant attention over the past decade due to their remarkable material properties. Graphene is the most frequently studied, however a range of other 2D materials such as molybdenum disulfide and boron nitride have also demonstrated properties which will help society advance in areas from opto-electronics to sustainable energy. One of the biggest challenges currently facing 2D nanomaterials is scalable production. Current exfoliation processes are insufficient for industrial scale production due to high energy requirements, poor yield (typically < 5 wt%), introduction of material defects and low production rates (< 6 g/h). This project aims to address these process limitations. A novel liquid exfoliation approach will be investigated, using continuous flow over a spinning disc to create mono- and few-layer materials. The research activities will provide a new holistic insight into shear-induced liquid exfoliation, by experimentally and numerically examining how the fluid mechanics and multiphase transport phenomena over the spinning disc affect material characteristics at the nanoscale. The investigation involves cooperation between multiple disciplines. Experiments include the optical techniques of infrared thermography, high-speed imagery and particle image velocimetry. The researcher will receive extensive training in advanced numerical methods for simulating thin liquid films and interfacial flows at Imperial College London. Training in microscopy techniques will also be completed for the measurement of nanosheet defects and size. These research activities will assist the development of future liquid exfoliation technologies and are aligned with personalised actions to advance career development. The fellowship will broaden the researcher's technical and complimentary expertise, and facilitate inter-sectoral mobility from thermal to chemical engineering, nanotechnology and process intensification.

 Publications

year authors and title journal last update
List of publications.
2018 U. Farooq, J. Stafford, C. Petit, and O. K. Matar
3D Simulations of Falling Films on the Inner Surface of a Rotating Cylinder
published pages: , ISSN: , DOI:
71st Annual Meeting of the American Physical Society’s Division of Fluid Dynamics Annual (abstract submission) 2019-10-08
2018 Jason Stafford, Omar Matar
Evolution of waves in inertia-dominated thin liquid films flowing over a rapidly rotating disc
published pages: , ISSN: , DOI:
71st Annual Meeting of the American Physical Society’s Division of Fluid Dynamics Annual (abstract submission) 2019-10-08
2018 Jason Stafford, Omar Matar, Camille Petit
Producing Graphene at Scale
published pages: 24-28, ISSN: 0302-0797, DOI:
The Chemical Engineer 930/31 2019-10-08
2018 Jason Stafford, Andrius Patapas, Nwachukwu Uzo, Omar K. Matar, Camille Petit
Towards scale-up of graphene production via nonoxidizing liquid exfoliation methods
published pages: 3246-3276, ISSN: 0001-1541, DOI: 10.1002/aic.16174
AIChE Journal 64/9 2019-10-08
2018 N. Uzo, J. Stafford, C. Petit, O. K. Matar
Utilising the hydrodynamics of thin liquid films flowing over a spinning disc to produce graphene
published pages: , ISSN: , DOI:
71st Annual Meeting of the American Physical Society’s Division of Fluid Dynamics Annual (abstract submission) 2019-10-08

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LENSD" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LENSD" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

CODer (2020)

The molecular basis and genetic control of local gene co-expression and its impact in human disease

Read More  

ARMOUR (2020)

smARt Monitoring Of distribUtion netwoRks for robust power quality

Read More