Opendata, web and dolomites


Liquid Exfoliation of Nanomaterials using Spinning Discs

Total Cost €


EC-Contrib. €






 LENSD project word cloud

Explore the words cloud of the LENSD project. It provides you a very rough idea of what is the project "LENSD" about.

multiple    molybdenum    technologies    received    poor    experimentally    assist    graphene    two    imperial    sustainable    defects    dimensional    layer    particle    opto    aligned    career    phenomena    frequently    optical    actions    materials    size    flows    industrial    extensive    limitations    exfoliation    boron    thin    chemical    nanoscale    fellowship    mono    cooperation    society    fluid    velocimetry    nitride    simulating    demonstrated    infrared    techniques    liquid    2d    college    decade    introduction    disc    nanomaterials    numerical    material    thermal    interfacial    remarkable    expertise    multiphase    broaden    speed    lt    researcher    complimentary    nanosheet    few    thermography    engineering    create    mobility    sectoral    flow    shear    insufficient    wt    rates    disciplines    spinning    scalable    image    inter    holistic    training    london    continuous    intensification    yield    numerically    electronics    mechanics    transport    disulfide    energy    films    nanotechnology    receive    biggest    imagery    personalised    microscopy    experiments    investigation   

Project "LENSD" data sheet

The following table provides information about the project.


Organization address
city: LONDON
postcode: SW7 2AZ

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-01-09   to  2019-01-08


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Two-dimensional (2D) nanomaterials have received significant attention over the past decade due to their remarkable material properties. Graphene is the most frequently studied, however a range of other 2D materials such as molybdenum disulfide and boron nitride have also demonstrated properties which will help society advance in areas from opto-electronics to sustainable energy. One of the biggest challenges currently facing 2D nanomaterials is scalable production. Current exfoliation processes are insufficient for industrial scale production due to high energy requirements, poor yield (typically < 5 wt%), introduction of material defects and low production rates (< 6 g/h). This project aims to address these process limitations. A novel liquid exfoliation approach will be investigated, using continuous flow over a spinning disc to create mono- and few-layer materials. The research activities will provide a new holistic insight into shear-induced liquid exfoliation, by experimentally and numerically examining how the fluid mechanics and multiphase transport phenomena over the spinning disc affect material characteristics at the nanoscale. The investigation involves cooperation between multiple disciplines. Experiments include the optical techniques of infrared thermography, high-speed imagery and particle image velocimetry. The researcher will receive extensive training in advanced numerical methods for simulating thin liquid films and interfacial flows at Imperial College London. Training in microscopy techniques will also be completed for the measurement of nanosheet defects and size. These research activities will assist the development of future liquid exfoliation technologies and are aligned with personalised actions to advance career development. The fellowship will broaden the researcher's technical and complimentary expertise, and facilitate inter-sectoral mobility from thermal to chemical engineering, nanotechnology and process intensification.


year authors and title journal last update
List of publications.
2018 U. Farooq, J. Stafford, C. Petit, and O. K. Matar
3D Simulations of Falling Films on the Inner Surface of a Rotating Cylinder
published pages: , ISSN: , DOI:
71st Annual Meeting of the American Physical Society’s Division of Fluid Dynamics Annual (abstract submission) 2019-10-08
2018 Jason Stafford, Omar Matar
Evolution of waves in inertia-dominated thin liquid films flowing over a rapidly rotating disc
published pages: , ISSN: , DOI:
71st Annual Meeting of the American Physical Society’s Division of Fluid Dynamics Annual (abstract submission) 2019-10-08
2018 Jason Stafford, Omar Matar, Camille Petit
Producing Graphene at Scale
published pages: 24-28, ISSN: 0302-0797, DOI:
The Chemical Engineer 930/31 2019-10-08
2018 Jason Stafford, Andrius Patapas, Nwachukwu Uzo, Omar K. Matar, Camille Petit
Towards scale-up of graphene production via nonoxidizing liquid exfoliation methods
published pages: 3246-3276, ISSN: 0001-1541, DOI: 10.1002/aic.16174
AIChE Journal 64/9 2019-10-08
2018 N. Uzo, J. Stafford, C. Petit, O. K. Matar
Utilising the hydrodynamics of thin liquid films flowing over a spinning disc to produce graphene
published pages: , ISSN: , DOI:
71st Annual Meeting of the American Physical Society’s Division of Fluid Dynamics Annual (abstract submission) 2019-10-08

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LENSD" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LENSD" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)


The missing pillar. European social policy and Eurosceptic challenges (SOCIALEU)

Read More  

NeoPur (2019)

New treatments and novel diagnostic tests for neonatal seizures based on purinergic signaling.

Read More  

InProSMod (2021)

Cholinergic and NMDAR-dependent recruitment of Layer 1 Interneuron shapes cortical motor Processing through network States Modulation

Read More