Opendata, web and dolomites

MACOLAB TERMINATED

Towards a mathematical conjecture for the Landau-Ginzburg/conformal field theory correspondence and beyond

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MACOLAB project word cloud

Explore the words cloud of the MACOLAB project. It provides you a very rough idea of what is the project "MACOLAB" about.

few    modularity    stating    theory    ginzburg    vertex    conformal    gained    theories    curie    infrared    matrix    encode    intimately    superconductivity    pushing    inspiring    88    categories    mathematical    bridge    complementary    representations    operator    university    tensoriality    experts    category    describe    80s    defects    cfts    equivalences    symmetry    lg    fixed    marie    interesting    cft    correspondence    string    borcherds    date    supersymmetric    homological    list    model    promoted    lack    modular    completely    examples    point    attacking    landau    efforts    initially    polynomial    models    mirror    structures    algebras    statement    understand    host    display    places    charge    qfts    exploring    quantum    physics    implies    exactly    opening    mathematics    utrecht    completing    algebraic    despite    gates    definition    galois    tensor    inspired    surprising    medalist    expertise    representation    central    complete    play    factorizations    hosting    seeming    mathematically    geometry   

Project "MACOLAB" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITEIT UTRECHT 

Organization address
address: HEIDELBERGLAAN 8
city: UTRECHT
postcode: 3584 CS
website: www.uu.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Project website https://sites.google.com/site/anaroscamacho/
 Total cost 165˙598 €
 EC max contribution 165˙598 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-08-01   to  2019-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITEIT UTRECHT NL (UTRECHT) coordinator 165˙598.00

Map

 Project objective

Initially a model to describe superconductivity, Landau-Ginzburg (LG) models were promoted in the late 80s to supersymmetric quantum field theories (QFTs) completely characterized by a polynomial W called potential. They gained importance in string theory and algebraic geometry as they play an interesting role in homological mirror symmetry. On the other hand, conformal field theories (CFTs) have been another kind of QFTs which display conformal symmetry. They have focused many efforts to understand the mathematical structures which encode them, e.g. inspiring the definition of vertex operator algebras (Borcherds, Fields medalist ’88) or pushing forward our knowledge of modular tensor categories. Despite seeming two very different topics, LG models and CFTs are intimately related via a result of theoretical physics — the LG/CFT correspondence— stating that the infrared fixed point of a LG model with potential W is a CFT of central charge c(W). Mathematically this implies equivalences of categories of matrix factorizations (which describe defects of LG models) and categories of representations of vertex operator algebras (which describe defects of CFT). Up to date, we lack a complete understanding of the LG/CFT correspondence and we only have a few examples. The main goal of this Marie Curie is to find a mathematical statement for it, via completing a list of examples, exploring their properties (e.g. tensoriality or even modularity of the categories) and then attacking the main goal. Utrecht University (host institution) is one of the few places in Europe hosting experts in representation, category and Galois theory and mathematical physics, providing exactly the necessary and complementary expertise required to achieve this goal. These results will build a surprising bridge between very different areas of mathematics, opening new research gates completely inspired by physics.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MACOLAB" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MACOLAB" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

ICARUS (2020)

Information Content of locAlisation: fRom classical to qUantum Systems

Read More  

DIGILEAD (2020)

Digital leadership, well-being and performance in organizations

Read More  

ReSOLeS (2019)

New Reconfigurable Spectrum Optical Fibre Laser Sources

Read More