Opendata, web and dolomites

MACOLAB TERMINATED

Towards a mathematical conjecture for the Landau-Ginzburg/conformal field theory correspondence and beyond

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MACOLAB project word cloud

Explore the words cloud of the MACOLAB project. It provides you a very rough idea of what is the project "MACOLAB" about.

matrix    exploring    few    factorizations    complementary    mathematics    88    mirror    bridge    inspiring    exactly    cft    university    fixed    intimately    medalist    efforts    point    pushing    lg    string    vertex    landau    borcherds    hosting    theories    encode    quantum    despite    operator    expertise    complete    central    gates    describe    host    conformal    places    lack    stating    opening    mathematical    interesting    geometry    categories    inspired    representations    modularity    completing    correspondence    experts    galois    implies    algebraic    models    understand    marie    superconductivity    infrared    definition    model    attacking    cfts    representation    polynomial    examples    theory    display    modular    supersymmetric    symmetry    equivalences    promoted    homological    mathematically    gained    algebras    physics    completely    structures    utrecht    tensoriality    defects    ginzburg    date    charge    list    play    category    seeming    surprising    statement    80s    curie    qfts    tensor    initially   

Project "MACOLAB" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITEIT UTRECHT 

Organization address
address: HEIDELBERGLAAN 8
city: UTRECHT
postcode: 3584 CS
website: www.uu.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Project website https://sites.google.com/site/anaroscamacho/
 Total cost 165˙598 €
 EC max contribution 165˙598 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-08-01   to  2019-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITEIT UTRECHT NL (UTRECHT) coordinator 165˙598.00

Map

 Project objective

Initially a model to describe superconductivity, Landau-Ginzburg (LG) models were promoted in the late 80s to supersymmetric quantum field theories (QFTs) completely characterized by a polynomial W called potential. They gained importance in string theory and algebraic geometry as they play an interesting role in homological mirror symmetry. On the other hand, conformal field theories (CFTs) have been another kind of QFTs which display conformal symmetry. They have focused many efforts to understand the mathematical structures which encode them, e.g. inspiring the definition of vertex operator algebras (Borcherds, Fields medalist ’88) or pushing forward our knowledge of modular tensor categories. Despite seeming two very different topics, LG models and CFTs are intimately related via a result of theoretical physics — the LG/CFT correspondence— stating that the infrared fixed point of a LG model with potential W is a CFT of central charge c(W). Mathematically this implies equivalences of categories of matrix factorizations (which describe defects of LG models) and categories of representations of vertex operator algebras (which describe defects of CFT). Up to date, we lack a complete understanding of the LG/CFT correspondence and we only have a few examples. The main goal of this Marie Curie is to find a mathematical statement for it, via completing a list of examples, exploring their properties (e.g. tensoriality or even modularity of the categories) and then attacking the main goal. Utrecht University (host institution) is one of the few places in Europe hosting experts in representation, category and Galois theory and mathematical physics, providing exactly the necessary and complementary expertise required to achieve this goal. These results will build a surprising bridge between very different areas of mathematics, opening new research gates completely inspired by physics.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MACOLAB" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MACOLAB" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

SymCO (2020)

Asymptotic Symmetries: from Concepts to Observations

Read More