Opendata, web and dolomites

3DQuant

Understanding long-range transcriptional regulation in the context of the 3D genome organization

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 3DQuant project word cloud

Explore the words cloud of the 3DQuant project. It provides you a very rough idea of what is the project "3DQuant" about.

contributes    architecture    precisely    associating    expression    unknown    megabase    chromosome    correlated    unprecedented    genes    relationship    influences    3d    promoters    modulates    mediated    isolated    single    cell    domains    quantitative    stem    environment    spatial    measured    engineering    cells    physical    technologies    underlying    conformation    pairs    gene    distances    unravel    suggests    manner    mouse    shown    communication    folded    modulate    close    regulatory    embryonic    self    organization    metazoans    imaging    linked    measuring    partitioned    interactions    establishment    genome    transcriptional    topologically    quantitatively    chromatin    promoter    mammalian    generate    patterns    enhancers    3c    outputs    action    sub    space    engineered    view    genetic    mechanism    regulation    techniques    structure    capture    loops    chromosomes    biophysical    modulation    cognate    mobilized    mechanisms    proximity    genomic    transcription    enhancer    partitioning    live    temporal    tads    dimensional   

Project "3DQuant" data sheet

The following table provides information about the project.

Coordinator
FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION 

Organization address
address: MAULBEERSTRASSE 66
city: BASEL
postcode: 4058
website: www.fmi.ch

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 175˙419 €
 EC max contribution 175˙419 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-03-01   to  2019-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION CH (BASEL) coordinator 175˙419.00

Map

 Project objective

Enhancers are regulatory elements that control the spatial and temporal expression of genes in metazoans. Enhancers are able to modulate transcription of a target gene from large genomic distances, as a result of the formation of chromatin loops that bring them in close spatial proximity to cognate promoters. The manner how specific patterns of enhancer-promoter physical interactions are established is linked to how chromosomes are folded in the three-dimensional (3D) space. Recent studies based on chromosome conformation capture (3C) have shown that mammalian chromosomes are partitioned into self-associating sub-megabase domains called Topologically Associating Domains (TADs). Genetic evidence suggests that 3D chromatin organization within and across TADs contributes to the establishment and partitioning of enhancers-promoters physical communication. Yet it is still unknown by which biophysical mechanisms chromosome architecture modulates enhancer action, and thus transcription. The goal of this proposal is to determine the quantitative relationship between 3D chromatin architecture and enhancer-promoter activity to unravel the mechanism of long-range transcriptional modulation mediated by enhancers. Addressing this goal requires a system where transcriptional outputs can be measured precisely and quantitatively, and correlated with 3D distances. To this aim, we will use state-of-the art genome engineering techniques to generate mouse embryonic stem cells with engineered enhancer-promoter pairs in an isolated chromatin environment, where a selected enhancer can be mobilized at different distances from its cognate promoter. We will use this system to quantitatively assess how 3D chromatin structure influences enhancer action by measuring transcription and promoter-enhancer interactions using 3C-based technologies, single-cell methods and live-cell imaging. This will lead to an unprecedented view of the mechanisms underlying long-range transcriptional regulation.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "3DQUANT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "3DQUANT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CYBERSECURITY (2018)

Cyber Security Behaviours

Read More  

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More