Opendata, web and dolomites


Understanding long-range transcriptional regulation in the context of the 3D genome organization

Total Cost €


EC-Contrib. €






 3DQuant project word cloud

Explore the words cloud of the 3DQuant project. It provides you a very rough idea of what is the project "3DQuant" about.

spatial    architecture    imaging    quantitative    genetic    chromatin    loops    mechanisms    capture    topologically    techniques    modulates    cells    promoters    genome    underlying    genomic    generate    relationship    establishment    folded    mechanism    3c    transcription    engineered    pairs    genes    measuring    space    interactions    expression    transcriptional    dimensional    stem    proximity    suggests    structure    gene    live    domains    unravel    sub    contributes    organization    chromosome    linked    modulate    influences    precisely    unprecedented    metazoans    mediated    outputs    close    cognate    embryonic    unknown    tads    enhancer    chromosomes    megabase    biophysical    self    enhancers    partitioning    isolated    regulatory    patterns    promoter    modulation    temporal    mouse    measured    action    cell    environment    engineering    shown    3d    communication    correlated    conformation    technologies    associating    partitioned    view    single    mobilized    mammalian    quantitatively    distances    physical    manner    regulation   

Project "3DQuant" data sheet

The following table provides information about the project.


Organization address
city: BASEL
postcode: 4058

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 175˙419 €
 EC max contribution 175˙419 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-03-01   to  2019-02-28


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Enhancers are regulatory elements that control the spatial and temporal expression of genes in metazoans. Enhancers are able to modulate transcription of a target gene from large genomic distances, as a result of the formation of chromatin loops that bring them in close spatial proximity to cognate promoters. The manner how specific patterns of enhancer-promoter physical interactions are established is linked to how chromosomes are folded in the three-dimensional (3D) space. Recent studies based on chromosome conformation capture (3C) have shown that mammalian chromosomes are partitioned into self-associating sub-megabase domains called Topologically Associating Domains (TADs). Genetic evidence suggests that 3D chromatin organization within and across TADs contributes to the establishment and partitioning of enhancers-promoters physical communication. Yet it is still unknown by which biophysical mechanisms chromosome architecture modulates enhancer action, and thus transcription. The goal of this proposal is to determine the quantitative relationship between 3D chromatin architecture and enhancer-promoter activity to unravel the mechanism of long-range transcriptional modulation mediated by enhancers. Addressing this goal requires a system where transcriptional outputs can be measured precisely and quantitatively, and correlated with 3D distances. To this aim, we will use state-of-the art genome engineering techniques to generate mouse embryonic stem cells with engineered enhancer-promoter pairs in an isolated chromatin environment, where a selected enhancer can be mobilized at different distances from its cognate promoter. We will use this system to quantitatively assess how 3D chromatin structure influences enhancer action by measuring transcription and promoter-enhancer interactions using 3C-based technologies, single-cell methods and live-cell imaging. This will lead to an unprecedented view of the mechanisms underlying long-range transcriptional regulation.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "3DQUANT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "3DQUANT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

PNAIC (2018)

Positive and Negative Asymmetry in Intergroup Contact: Its Impact on Linguistic Forms of Communication and Physiological Responses

Read More  

Goc-MM (2019)

Human gut microbiota on gut-on-a-chip

Read More  

MIGPSC (2018)

Shaping the European Migration Policy: the role of the security industry

Read More