Opendata, web and dolomites

SalFluMa SIGNED

Saline Fluids in the Mantle - Experimental Investigation of Their Role in Diamond Formation and Kimberlite Magmatism

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SalFluMa project word cloud

Explore the words cloud of the SalFluMa project. It provides you a very rough idea of what is the project "SalFluMa" about.

equilibria    experiments    genesis    transport    nster    academia    suggests    samples    envisaged    area    majority    generation    reactions    debated    institutes    subcontinental    perspective    play    deep    examine    analytical    saline    he    kimberlite    diplom    mineralogy    phd    indispensable    diamond    hypotheses    continents    return    oceanic    melts    subducted    heavily    hypothesis    formed    rocks    beneath    respectively    petrological    economic    gem    fragments    mantle    fluid    completely    complimentary    mainz    carrier    constitute    volcanic    diamonds    inclusions    lithospheric    wwu    rock    types    compositions    transition    natural    earth    crust    surface    performed    underneath    temperature    petrology    percolate    benefit    reaction    micro    gained    wealth    possibly    industry    slabs    university    worked    experimental    contacts    bearing    pressure    kimberlites    uuml    chloride    geosciences    alberta       fluids    kimberlitic    sclm    brings    profound   

Project "SalFluMa" data sheet

The following table provides information about the project.

Coordinator
WESTFAELISCHE WILHELMS-UNIVERSITAET MUENSTER 

Organization address
address: SCHLOSSPLATZ 2
city: Munster
postcode: 48149
website: www.uni-muenster.de/en/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 159˙460 €
 EC max contribution 159˙460 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-RI
 Starting year 2018
 Duration (year-month-day) from 2018-02-01   to  2020-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    WESTFAELISCHE WILHELMS-UNIVERSITAET MUENSTER DE (Munster) coordinator 159˙460.00

Map

 Project objective

The majority of natural diamonds that have great economic importance for the gem industry are formed at great depth beneath old continents in the subcontinental lithospheric mantle (SCLM). The main carrier of these diamonds are kimberlites, deep volcanic rocks that transport fragments of the SCLM to the Earth’s surface. Both diamond formation and kimberlite genesis are still heavily debated processes in the Geosciences. Growing evidence from natural samples, such as fluid inclusions in diamonds, suggests that chloride-bearing fluids may play an important role in diamond formation and possibly in kimberlite generation. These saline fluids are envisaged to percolate into the SCLM from slabs of oceanic crust that are subducted underneath the continents. The proposed research will investigate this hypothesis from an experimental perspective. High-pressure and temperature experiments, performed at the Institute for Mineralogy at the University of Münster (WWU), will examine the reactions between saline fluids and different rock types that constitute the SCLM. The reaction products will be evaluated by micro-analytical methods, and their compositions compared to natural samples and to kimberlitic melts. These petrological experiments are completely novel and indispensable in testing existing hypotheses on diamond formation and kimberlite generation. The applicant is new to the field of experimental petrology, but brings along a wealth of complimentary experience. During his Diplom and PhD research (at the University of Mainz and the University of Alberta, respectively) he has worked with a wide range of analytical methods and gained profound knowledge of kimberlites, diamonds, and phase equilibria of the mantle. The WWU would benefit from the applicant’s previous research experience and his contacts in academia and industry. In return, the applicant would greatly benefit from a transition into experimental petrology at one of Europe’s top research institutes in this area.

 Publications

year authors and title journal last update
List of publications.
2019 Teresa Ubide, John Caulfield, Claire Brandt, Yannick Bussweiler, Silvio Mollo, Flavio Di Stefano, Manuela Nazzari, Piergiorgio Scarlato
Deep Magma Storage Revealed by Multi-Method Elemental Mapping of Clinopyroxene Megacrysts at Stromboli Volcano
published pages: , ISSN: 2296-6463, DOI: 10.3389/feart.2019.00239
Frontiers in Earth Science 7 2020-02-13
2018 Yannick Bussweiler, D Graham Pearson, Thomas Stachel, Bruce A. Kjarsgaard
Cr-rich megacrysts of clinopyroxene and garnet from Lac de Gras kimberlites, Slave Craton, Canada – implications for the origin of clinopyroxene and garnet in cratonic lherzolites
published pages: 583-596, ISSN: 0930-0708, DOI: 10.1007/s00710-018-0599-2
Mineralogy and Petrology 112/S2 2020-02-13
2019 Y. Bussweiler, A. Giuliani, A. Greig, B.A. Kjarsgaard, D. Petts, S.E. Jackson, N. Barrett, Y. Luo, D.G. Pearson
Trace element analysis of high-Mg olivine by LA-ICP-MS – Characterization of natural olivine standards for matrix-matched calibration and application to mantle peridotites
published pages: 136-157, ISSN: 0009-2541, DOI: 10.1016/j.chemgeo.2019.06.019
Chemical Geology 524 2020-02-13
2019 Bussweiler
Polymineralic Inclusions in Megacrysts as Proxies for Kimberlite Melt Evolution—A Review
published pages: 530, ISSN: 2075-163X, DOI: 10.3390/min9090530
Minerals 9/9 2020-02-13
2020 Yannick Bussweiler, Fernanda Gervasoni, Martin Rittner, Jasper Berndt, Stephan Klemme
Trace element mapping of high-pressure, high-temperature experimental samples with laser ablation ICP time-of-flight mass spectrometry – Illuminating melt-rock reactions in the lithospheric mantle
published pages: 105282, ISSN: 0024-4937, DOI: 10.1016/j.lithos.2019.105282
Lithos 352-353 2020-02-13
2019 M.Y. Krebs, D.G. Pearson, A.J. Fagan, Y. Bussweiler, C. Sarkar
The application of trace elements and Sr–Pb isotopes to dating and tracing ruby formation: The Aappaluttoq deposit, SW Greenland
published pages: 42-58, ISSN: 0009-2541, DOI: 10.1016/j.chemgeo.2019.05.035
Chemical Geology 523 2020-02-13
2019 Azhar M. Shaikh, Suresh C. Patel, Yannick Bussweiler, Satya P. Kumar, Sebastian Tappe, S. Ravi, Datta Mainkar
Olivine trace element compositions in diamondiferous lamproites from India: Proxies for magma origins and the nature of the lithospheric mantle beneath the Bastar and Dharwar cratons
published pages: 501-518, ISSN: 0024-4937, DOI: 10.1016/j.lithos.2018.11.026
Lithos 324-325 2020-02-13

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SALFLUMA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SALFLUMA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

TOPOCIRCUS (2019)

Simulations of Topological Phases in Superconducting Circuits

Read More  

MEM-ENTO (2020)

Tracing memory formation in a behaving animal: analysis of learning-induced morpho-functional plasticity along the bee’s olfactory system

Read More  

EPIC (2019)

Evolution of Planktonic Gastropod Calcification

Read More