Opendata, web and dolomites

NanoPhosTox SIGNED

Nanocomposite Engineered Particles for Phosphorus Recovery and Toxicological Risk Assessment for the Aquatic Environment

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NanoPhosTox project word cloud

Explore the words cloud of the NanoPhosTox project. It provides you a very rough idea of what is the project "NanoPhosTox" about.

iso    import    tests    circular    predominantly    protocols    global    toxicity    verifying    daphnia    nutrient    technologies    sources    rock    ultimate    custom    innovative    intensively    few    explore    environmental    resource    exploited    simultaneous    assays    wastewater    dependency    food    curie    2014    engineered    excellent    biological    precursors    successful    worldwide    frequently    nanophostox    material    oxides    reported    regarding    fundamentals    action    risks    metal    risk    secondary    ecotoxicological    competitive    assessing    hydroxides    recovery    sorbents    engineering    deficits    marie    removal    mostly    declared    gaps    phosphorus    nanostructured    efficient    vibrio    countries    finite    hazards    toxicology    oecd    science    security    ecotoxicity    phosphate    sorbent    interdisciplinary    materials    insecurity    nano    algae    structure    economy    critical    commercialization    arising    agriculture    environmentally    bridging    nanoparticles    purpose    concentrated    optimize    efforts    fischeri    paradigm    exclude   

Project "NanoPhosTox" data sheet

The following table provides information about the project.

Coordinator
KEEMILISE JA BIOLOOGILISE FUUSIKA INSTITUUT 

Organization address
address: AKADEEMIA TEE 23
city: TALLINN
postcode: 12618
website: www.kbfi.ee

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Estonia [EE]
 Total cost 154˙193 €
 EC max contribution 154˙193 € (100%)
 Programme 1. H2020-EU.4. (SPREADING EXCELLENCE AND WIDENING PARTICIPATION)
 Code Call H2020-WF-01-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-09-01   to  2022-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KEEMILISE JA BIOLOOGILISE FUUSIKA INSTITUUT EE (TALLINN) coordinator 154˙193.00

Map

 Project objective

Phosphorus (P) is a key nutrient with crucial importance for agriculture and global food security. Phosphate rock is an intensively exploited finite resource, concentrated only in a few countries worldwide, leading to strong import dependency and insecurity for countries with resource deficits. Thus, in 2014 the EU Commission declared P rock as one of the 20 critical resources for the EU. Recently, significant efforts and priority funding were focused on developing materials and technologies for P recovery from secondary P rich sources, such as wastewater, following the EU Circular Economy paradigm. Engineered nanostructured materials, predominantly metal oxides/hydroxides, have been frequently reported as excellent sorbents for P in wastewater. However, the uncertainty regarding possible ecotoxicological hazards arising from the use of these custom materials has produced new research gaps. The main purpose of this Marie Curie action is to assess the environmental risk and potential toxicity of a novel, highly efficient nanostructured P sorbent material and optimize its structure to exclude any ecotoxicological risks from its application. Following the interdisciplinary approach bridging Nano-Toxicology, Materials Science and Environmental Engineering, “NanoPhosTox” will explore various test systems to evaluate the biological effects of the proposed material. Attention will be focused mostly on ecotoxicity tests based on OECD and ISO test protocols, such as Vibrio fischeri, Algae and Daphnia assays, which allow assessing toxicity effects of the material’s precursors, including nanoparticles. Thus, “NanoPhosTox” will build on the previous successful research which established the fundamentals of an innovative, robust and highly competitive technology for the simultaneous removal and recovery of P from wastewater. The ultimate goal of this action is to advance the further commercialization of the technology by verifying its environmentally friendly application.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NANOPHOSTOX" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NANOPHOSTOX" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.4.)

LC-FMRI (2019)

Deciphering the effects of locus coeruleus activity on whole-brain dynamics and neurovascular coupling

Read More  

ACoDM (2019)

Affective Control of Decision Making

Read More  

ProBioMem (2020)

Molecular Probes for Biofouling monitoring in Membrane Processes

Read More