Opendata, web and dolomites

ORIGAMI SIGNED

The origin of the Galactic magnetic field

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "ORIGAMI" data sheet

The following table provides information about the project.

Coordinator
IDRYMA TECHNOLOGIAS KAI EREVNAS 

Organization address
address: N PLASTIRA STR 100
city: IRAKLEIO
postcode: 70013
website: www.forth.gr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Greece [EL]
 Total cost 152˙653 €
 EC max contribution 152˙653 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-06-01   to  2019-11-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IDRYMA TECHNOLOGIAS KAI EREVNAS EL (IRAKLEIO) coordinator 152˙653.00

Map

 Project objective

Magnetic fields lie at the heart of essentially all the outstanding problems in galactic evolution. However, the measurement of interstellar magnetic fields is very challenging. We can either measure the strength or the direction of the magnetic field vector in different regions of the Milky Way. Clearly, in order to assess the impact of the magnetic field in the core processes of galactic evolution, such as star formation and stellar feedback, we need to complement the observations with simulations of the magnetic field evolution.

The most successful simulations of the galactic magnetic field evolution show that tiny magnetic seeds of cosmic origin were amplified to their current values through a dynamo process. In a dynamo, large-scale galactic processes such as differential rotation and turbulence twist magnetic field lines, and small-scale processes like Ohmic diffusion reconnect them. However, simulations of this process so far lack the simultaneous modeling of the processes that generate turbulence and the realistic small-scale diffusion that drives the dynamo.

This ambitious project will develop the first simulations that will include all the core processes of galactic evolution, such as a multi-phase interstellar medium, time-dependent star formation and stellar feedback, and the realistic non-ideal MHD terms necessary for modeling a dynamo. The simulations will be performed with the RAMSES code, a throughly tested tool for galaxy evolution simulations. The Adaptive Mesh Refinement technique employed in the code will allow capturing the self-consistent generation of turbulence by stellar feedback, and its zoom-in capabilities will allow re-simulating regions of interest with enough resolution to model the magnetic field diffusion.

The outcome will be the first self-consistent model of the Galactic magnetic field, an essential input for cosmological, galaxy-evolution, and star-formation theories, and a reference tool for observational studies.

 Publications

year authors and title journal last update
List of publications.
2018 Evangelia Ntormousi
Magnetic fields in massive spirals: The role of feedback and initial conditions
published pages: L5, ISSN: 0004-6361, DOI: 10.1051/0004-6361/201834153
Astronomy & Astrophysics 619 2020-02-05

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ORIGAMI" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ORIGAMI" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

DGLC (2019)

Domain-general language control: Evidence from the switching paradigm

Read More  

THIODIV (2020)

Exploring thioalkynes potential in gold catalysis with a divergent reactivity manifold

Read More  

OSeaIce (2019)

Two-way interactions between ocean heat transport and Arctic sea ice

Read More