Opendata, web and dolomites

DropContEvo SIGNED

A droplet microfluidic system for continuous in vivo evolution.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DropContEvo project word cloud

Explore the words cloud of the DropContEvo project. It provides you a very rough idea of what is the project "DropContEvo" about.

population    comprise    extensive    community    picoliter    breakthrough    directed    populations    tryptophan    cell    bacteria    droplet    schemes    microfluidics    times    splitting    presenting    beneficiary    biologists    nanoliter    encapsulation    stage    format    volume    cells    accelerate    thousands    throughput    compartments    hollfelder    experiments    complementary    strategies    hundreds    biotechnologists    single    proof    absorbance    reaction    technologies    evolutionary    fluorescence    ing    sorting    water    soft    acute    dr    coupled    microfluidic    fresh    multiple    droplets    aid    professional    vitro    content    coli    libraries    biomolecules    continuous    confinement    small    biochemistry    skills    biotechnology    enzymes    training    synthase    of    specialists    larger    containing    economically    cycle    specializes    laboratory    active    industrial    series    microbiology    trps    efficient    passive    unsupervised    nutrients    vivo    picodroplets    dilution    oil    evolution    broad    screening    ultra    cycles   

Project "DropContEvo" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-01-01   to  2019-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 183˙454.00

Map

 Project objective

Droplet microfluidics has recently become one of the breakthrough technologies for high throughput screening in microbiology and biochemistry, including single cell studies and new approaches to in vitro evolution. Here we propose a development of a novel microfluidic system for unsupervised execution of multiple cycles of in vivo continuous evolution in hundreds of thousands of picoliter droplets. Each evolutionary cycle will comprise: i) encapsulation of single bacteria cells in water-in-oil compartments ii) growth of the cells coupled with production of economically relevant biomolecules iii) selection of the most efficient populations using ultra-high-throughput sorting of picodroplets, iv) dilution of each population via merging with 100 times larger nanoliter droplet containing fresh nutrients and v) passive splitting of each of the resulting nanoliter droplets to the libraries of picoliter droplets containing single cells. Confinement of the reaction in small volume and active sorting of droplets will facilitate and accelerate the process of in vivo evolution. Droplet format will also enable for various screening schemes, so far not available for continuous evolution strategies – e.g. based on high throughput fluorescence or absorbance measurements of the droplet content. The second stage of the project will comprise a series of proof-of-concept experiments presenting directed continuous evolution of the tryptophan synthase (TrpS) in E.coli bacteria. The technology proposed here would be very useful for broad community of biotechnologists, evolutionary biologists and industrial specialists without the experience in microfluidics. The proposed research will be conducted at Dr. Hollfelder´s laboratory that specializes in directed evolution of enzymes and application of microfluidics to industrial biotechnology. The project comprise broad and extensive training in research and complementary soft skills that will aid professional development of the Beneficiary.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DROPCONTEVO" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DROPCONTEVO" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MBL-Fermions (2020)

Probing many-body localization dynamics using ultracold fermions in an optical lattice

Read More  

DEF2DEV (2019)

Identification of the mode of action of plant defensins during root development and plant defense responses.

Read More  

SSHelectPhagy (2019)

Regulation of Selective autophagy by sulfide through persulfidation of protein targets.

Read More