Opendata, web and dolomites

ActiveBioFluids SIGNED

Origins of Collective Motion in Active Biofluids

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ActiveBioFluids project word cloud

Explore the words cloud of the ActiveBioFluids project. It provides you a very rough idea of what is the project "ActiveBioFluids" about.

micron    theoretical    world    tremendous    rheinhardtii    organisms    observations    emergence    signal    crucially    force    dominant    time    metachronal    piv    wave    flows    underlying    mechanisms    innovation    direct    swimming    till    fundamental    view    reproducing    incorporate    perturbations    motile    tomographic    tackles    microorganisms    biofilm    synthetically    driving    natural    contact    biophysics    experimental    consists    length    experiments    yield    signatures    optical    principles    motion    protist    alike    physicists    biologists    flagella    green    collective    scales    precisely    active    origins    area    led    spontaneous    cilia    dynamically    suspensions    unperturbed    ubiquitous    captivated    unravel    hydrodynamic    biological    interact    tweezers    chlamydomonas    embryonic    transduction    synchronization    paramecium    track    mu    mechanical    interactions    biofluids    organism    3d    arising    question    coherent    challenged    highlighted    cells    model    algae    setup    physiological   

Project "ActiveBioFluids" data sheet

The following table provides information about the project.

Coordinator
TECHNISCHE UNIVERSITEIT DELFT 

Organization address
address: STEVINWEG 1
city: DELFT
postcode: 2628 CN
website: www.tudelft.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 1˙500˙000 €
 EC max contribution 1˙500˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-STG
 Funding Scheme ERC-STG
 Starting year 2017
 Duration (year-month-day) from 2017-04-01   to  2022-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITEIT DELFT NL (DELFT) coordinator 1˙500˙000.00

Map

 Project objective

The emergence of coherent behaviour is ubiquitous in the natural world and has long captivated biologists and physicists alike. One area of growing interest is the collective motion and synchronization arising within and between simple motile organisms. My goal is to develop and use a novel experimental approach to unravel the origins of spontaneous coherent motion in three model systems of biofluids: (1) the synchronization of the two flagella of green algae Chlamydomonas Rheinhardtii, (2) the metachronal wave in the cilia of protist Paramecium and (3) the collective motion of swimming microorganisms in active suspensions. Understanding the mechanisms leading to collective motion is of tremendous importance because it is crucial to many biological processes such as mechanical signal transduction, embryonic development and biofilm formation.

Up till now, most of the work has been theoretical and has led to the dominant view that hydrodynamic interactions are the main driving force for synchronization and collective motion. Recent experiments have challenged this view and highlighted the importance of direct mechanical contact. New experimental studies are now crucially needed. The state-of-the-art of experimental approaches consists of observations of unperturbed cells. The key innovation in our approach is to dynamically interact with microorganisms in real-time, at the relevant time and length scales. I will investigate the origins of coherent motion by reproducing synthetically the mechanical signatures of physiological flows and direct mechanical interactions and track precisely the response of the organism to the perturbations. Our new approach will incorporate optical tweezers to interact with motile cells, and a unique μ-Tomographic PIV setup to track their 3D micron-scale motion.

This proposal tackles a timely question in biophysics and will yield new insight into the fundamental principles underlying collective motion in active biological matter.

 Publications

year authors and title journal last update
List of publications.
2019 Daniel Tam and Koen Muller
Open source package for the Calibration of Multiple Cameras for Large-Scale Experiments Using a Freely Moving Calibration Target
published pages: , ISSN: , DOI: 10.4121/uuid:3b0134e7-4436-4c6f-964b-d3dfd4ab7770
2020-02-06
2020 K. Muller, C. K. Hemelrijk, J. Westerweel, D. S. W. Tam
Calibration of multiple cameras for large-scale experiments using a freely moving calibration target
published pages: , ISSN: 0723-4864, DOI: 10.1007/s00348-019-2833-z
Experiments in Fluids 61/1 2020-02-06
2019 Da Wei, Parviz Ghoddoosi Dehnavi, Marie-Eve Aubin-Tam, Daniel Tam
Is the Zero Reynolds Number Approximation Valid for Ciliary Flows?
published pages: , ISSN: 0031-9007, DOI: 10.1103/physrevlett.122.124502
Physical Review Letters 122/12 2020-02-06

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ACTIVEBIOFLUIDS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ACTIVEBIOFLUIDS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Growth regulation (2019)

The wide-spread bacterial toxin delivery systems and their role in multicellularity

Read More  

EffectiveTG (2018)

Effective Methods in Tame Geometry and Applications in Arithmetic and Dynamics

Read More  

inhibiTOR (2020)

Novel selective mTORC1 inhibitors

Read More