Opendata, web and dolomites

ActiveBioFluids SIGNED

Origins of Collective Motion in Active Biofluids

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ActiveBioFluids project word cloud

Explore the words cloud of the ActiveBioFluids project. It provides you a very rough idea of what is the project "ActiveBioFluids" about.

underlying    cells    physicists    highlighted    ubiquitous    area    challenged    motion    biophysics    synchronization    biologists    motile    micron    hydrodynamic    view    direct    observations    contact    mechanisms    synthetically    tremendous    organisms    biofluids    force    theoretical    cilia    dynamically    world    wave    tackles    principles    tweezers    biofilm    swimming    protist    physiological    captivated    coherent    fundamental    innovation    unperturbed    paramecium    length    chlamydomonas    flagella    microorganisms    active    precisely    algae    green    till    suspensions    collective    reproducing    model    signal    alike    optical    dominant    rheinhardtii    driving    piv    led    interact    organism    flows    spontaneous    arising    experimental    tomographic    unravel    signatures    setup    mechanical    natural    perturbations    metachronal    embryonic    emergence    yield    mu    question    track    origins    transduction    3d    time    scales    consists    interactions    incorporate    crucially    experiments    biological   

Project "ActiveBioFluids" data sheet

The following table provides information about the project.

Coordinator
TECHNISCHE UNIVERSITEIT DELFT 

Organization address
address: STEVINWEG 1
city: DELFT
postcode: 2628 CN
website: www.tudelft.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 1˙500˙000 €
 EC max contribution 1˙500˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-STG
 Funding Scheme ERC-STG
 Starting year 2017
 Duration (year-month-day) from 2017-04-01   to  2022-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITEIT DELFT NL (DELFT) coordinator 1˙500˙000.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

The emergence of coherent behaviour is ubiquitous in the natural world and has long captivated biologists and physicists alike. One area of growing interest is the collective motion and synchronization arising within and between simple motile organisms. My goal is to develop and use a novel experimental approach to unravel the origins of spontaneous coherent motion in three model systems of biofluids: (1) the synchronization of the two flagella of green algae Chlamydomonas Rheinhardtii, (2) the metachronal wave in the cilia of protist Paramecium and (3) the collective motion of swimming microorganisms in active suspensions. Understanding the mechanisms leading to collective motion is of tremendous importance because it is crucial to many biological processes such as mechanical signal transduction, embryonic development and biofilm formation.

Up till now, most of the work has been theoretical and has led to the dominant view that hydrodynamic interactions are the main driving force for synchronization and collective motion. Recent experiments have challenged this view and highlighted the importance of direct mechanical contact. New experimental studies are now crucially needed. The state-of-the-art of experimental approaches consists of observations of unperturbed cells. The key innovation in our approach is to dynamically interact with microorganisms in real-time, at the relevant time and length scales. I will investigate the origins of coherent motion by reproducing synthetically the mechanical signatures of physiological flows and direct mechanical interactions and track precisely the response of the organism to the perturbations. Our new approach will incorporate optical tweezers to interact with motile cells, and a unique μ-Tomographic PIV setup to track their 3D micron-scale motion.

This proposal tackles a timely question in biophysics and will yield new insight into the fundamental principles underlying collective motion in active biological matter.

 Publications

year authors and title journal last update
List of publications.
2019 Daniel Tam and Koen Muller
Open source package for the Calibration of Multiple Cameras for Large-Scale Experiments Using a Freely Moving Calibration Target
published pages: , ISSN: , DOI: 10.4121/uuid:3b0134e7-4436-4c6f-964b-d3dfd4ab7770
2020-02-06
2020 K. Muller, C. K. Hemelrijk, J. Westerweel, D. S. W. Tam
Calibration of multiple cameras for large-scale experiments using a freely moving calibration target
published pages: , ISSN: 0723-4864, DOI: 10.1007/s00348-019-2833-z
Experiments in Fluids 61/1 2020-02-06
2019 Da Wei, Parviz Ghoddoosi Dehnavi, Marie-Eve Aubin-Tam, Daniel Tam
Is the Zero Reynolds Number Approximation Valid for Ciliary Flows?
published pages: , ISSN: 0031-9007, DOI: 10.1103/physrevlett.122.124502
Physical Review Letters 122/12 2020-02-06

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ACTIVEBIOFLUIDS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ACTIVEBIOFLUIDS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

HyperCube (2020)

HyperCube: Gram scale production of ferrite nanocubes and thermo-responsive polymer coated nanocubes for medical applications and further exploitation in other hyperthermia fields

Read More  

inSight (2019)

Moving a novel gene therapy paradigm to treat blindness to the market

Read More  

MCS-MD (2019)

The Molecular Dynamics of Membrane Contact Sites

Read More