Opendata, web and dolomites

SYMCELLS SIGNED

Resolving the molecular mechanisms of intracellular coral-algal symbiosis

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SYMCELLS project word cloud

Explore the words cloud of the SYMCELLS project. It provides you a very rough idea of what is the project "SYMCELLS" about.

establishment    sterols    sterol    mechanistic    understand    economically    phagosomes    little    symbiosis    prevailing    poor    algal    phagolysosomal    view    underpinning    first    expertise    reside    uncover    nutrients    clearance    mechanisms    advantages    animals    algae    fixed    cells    model    cnidarians    culture    machinery    anemone    many    microbes    destruction    cellular    sugars    remarkable    assays    significance    biological    persistence    candidate    unlike    map    phagocytosing    integrate    gain    imaging    pull    pathogens    manipulation    acquisition    translocation    underlying    functionally    leverage    cell    survival    stably    nutrient    cholesterol    habitats    coral    live    function    interactions    phagocytosis    phagosome    surprisingly    symbionts    proteins    photosynthetically    explore    interacting    transport    receptors    ecological    host    reefs    dependence    ecosystems    proteomics    fundamental    aiptasia    synthesize    ecologically    generate    pathogen    acquire    substitute    provision    record    symbiont    distinguish    intracellular    models    time    intractable    molecular    corals    organism    metabolic   

Project "SYMCELLS" data sheet

The following table provides information about the project.

Coordinator
RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG 

Organization address
address: SEMINARSTRASSE 2
city: HEIDELBERG
postcode: 69117
website: www.uni-heidelberg.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 2˙272˙485 €
 EC max contribution 2˙272˙485 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-COG
 Funding Scheme ERC-COG
 Starting year 2017
 Duration (year-month-day) from 2017-06-01   to  2022-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG DE (HEIDELBERG) coordinator 2˙272˙485.00

Map

 Project objective

Many cells stably integrate microbes to gain ecological advantages for the organism. A remarkable example is the symbiosis between corals and algae, whose provision of photosynthetically fixed nutrients enables coral survival in nutrient-poor habitats. To establish symbiosis, coral cells acquire symbionts via phagocytosis, a process often used for pathogen clearance in other animals. Symbionts reside in phagosomes, and the prevailing view is that, similar to some pathogens, symbionts avoid destruction via phagolysosomal manipulation. Yet, unlike pathogens, symbionts provide nutrients to their host, and this may be key for intracellular persistence. Most research on nutrient translocation has focused on sugars, but surprisingly, sterols may be significant because cnidarians cannot synthesize cholesterol. However, little is known about the underlying molecular mechanisms of symbiosis establishment. Because corals are intractable cell biological models, I will leverage our unique resources and expertise to uncover fundamental aspects of symbiont acquisition and metabolic dependence using the emerging model anemone Aiptasia. To investigate symbiont acquisition (Objective 1), I will distinguish symbiont-phagocytosing cells, test candidate symbiont receptors by gain- and loss-of-function, record symbiont/cell interactions by live-imaging, and generate a symbiosis cell culture system. To understand the significance of symbiont-derived sterols (Objective 2), I will map cellular sterol utilization and identify the sterol transport machinery, test whether symbiont sterols can functionally substitute cholesterol, identify novel sterol-interacting proteins by pull-down assays, and explore symbiont persistence mechanisms using comparative phagosome proteomics. This proposal will for the first time provide a mechanistic understanding of coral-algal symbiosis establishment, a crucial process underpinning coral reefs, economically and ecologically important ecosystems.

 Publications

year authors and title journal last update
List of publications.
2019 Marie R. Jacobovitz, Sebastian Rupp, Philipp A. Voss, Sebastian G. Gornik, Annika Guse
Dinoflagellate symbionts escape vomocytosis by host cell immune suppression
published pages: , ISSN: , DOI: 10.1101/864579
2020-02-05
2018 Victor A. S. Jones, Madeline Bucher, Elizabeth A. Hambleton, Annika Guse
Microinjection to deliver protein, mRNA, and DNA into zygotes of the cnidarian endosymbiosis model Aiptasia sp.
published pages: , ISSN: 2045-2322, DOI: 10.1038/s41598-018-34773-1
Scientific Reports 8/1 2019-05-27
2018 Elizabeth Hambleton, Arnold Shivas Jones, Ira Maegele, David Kvaskoff, Timo Sachsenheimer, Annika Guse
Enhanced Stability of Non-Canonical NPC2 in the symbiosome supports coral-algal symbiosis
published pages: , ISSN: , DOI: 10.1101/399766
2019-04-25

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SYMCELLS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SYMCELLS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CohoSing (2019)

Cohomology and Singularities

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More