Opendata, web and dolomites

LockChip

A custom lock chip for compact NMR

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 LockChip project word cloud

Explore the words cloud of the LockChip project. It provides you a very rough idea of what is the project "LockChip" about.

cube    magnet    analyte    miniaturized    permanent    external    opening    side    emergence    solution    maintenance    leads    easily    accuracy    versatility    lock    factories    drastically    market    detection    automation    big    channel    magnetic    remedy    brings    lack    drifts    chemical    tags    wire    time    absolute    detect    cramped    inherent    introduction    substance    mixed    resonance    lockchip    signal    extremely    vendor    tabletop    fits    factory    professional    liquid    15    portable    connect    chip    proportional    shifts    magnets    forensic    100k    dependent    significantly    nuclear    monitoring    circuitry    issue    entitled    helium    frequency    expensive    price    bores    mainly    compact    periods    size    extract    vast    generation    strength    nmr    ideal    markets    special    huge    erroneous    spectrometers    temperature    lower    superconducting    extended    dominated    mm    specificity    barrier    detector    provides    molecular    ownership    teaching   

Project "LockChip" data sheet

The following table provides information about the project.

Coordinator
KARLSRUHER INSTITUT FUER TECHNOLOGIE 

Organization address
address: KAISERSTRASSE 12
city: KARLSRUHE
postcode: 76131
website: www.kit.edu

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 150˙000 €
 EC max contribution 150˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-PoC
 Funding Scheme ERC-POC
 Starting year 2017
 Duration (year-month-day) from 2017-04-01   to  2018-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KARLSRUHER INSTITUT FUER TECHNOLOGIE DE (KARLSRUHE) coordinator 150˙000.00

Map

 Project objective

Nuclear magnetic resonance is an important chemical analysis method, because of its inherent chemical specificity, its versatility to extract molecular information, and its absolute accuracy. The market has been dominated by large superconducting NMR magnets with price tags of many 100k €. The emergence of less expensive low field compact (tabletop and portable) NMR spectrometers, based on the use of permanent magnets, with price tags around a factor of 10 lower than superconducting magnets, brings a drastically lower cost-of-ownership, and the significantly lower need for external support, maintenance, and lack of liquid Helium, which is opening up new applications and huge new markets for NMR.

Compact NMR spectrometers, mainly used for teaching but targeting professional applications (e.g. real time process monitoring in chemical factories), have very cramped magnet bores (15 mm cube) mainly needed for the generation and detection of analyte signal. The magnetic field strength of their permanent magnets is strongly temperature dependent, so that the proportional NMR frequency drifts during measurements that are taken over extended time periods, which can lead to erroneous resonance results and is a major challenge, especially for forensic applications, or applications in factories. The remedy is to detect the temperature-dependent frequency shifts of a special lock substance, which is typically mixed into the sample, but cannot be done in the case of factory automation applications.

This represents a big barrier for the introduction of compact NMR into many professional applications.

Our miniaturized NMR detector, entitled LockChip, provides an ideal solution for all aspects. Its extremely compact size, easily fits side-by-side with the vendor NMR detector, with only two leads of wire needed to connect it to the lock channel circuitry. Our chip can therefore solve this issue, and help to open up a vast market.

 Publications

year authors and title journal last update
List of publications.
2017 Mazin Jouda, Robert Kamberger, Jochen Leupold, Nils Spengler, Jürgen Hennig, Oliver Gruschke, Jan G. Korvink
A comparison of Lenz lenses and LC resonators for NMR signal enhancement
published pages: e21357, ISSN: 1552-5031, DOI: 10.1002/cmr.b.21357
Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering 47B/3 2020-01-23

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LOCKCHIP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LOCKCHIP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CohoSing (2019)

Cohomology and Singularities

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More