Opendata, web and dolomites

M-DrivE TERMINATED

Metabolic Drivers of Epigenetic Modifications: metabolic inducers of histone post-translational modifications in a biological setting

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 M-DrivE project word cloud

Explore the words cloud of the M-DrivE project. It provides you a very rough idea of what is the project "M-DrivE" about.

cell    substrates    acies    proteins    stable    derivatives    prolific    coenzyme    organism    serum    remove    tolerated    upregulate    substrate    realise    route    complementarity    modification    units    genetic    storage    acetyl    intracellular    bio    acylations    implication    acetylation    illuminate    diverse    model    influence    first    places    sole    subsequent    vehicle    expertise    species    form    modifications    demonstrating    tools    acyl    metabolic    affording    natural    function    combining    metabolism    metabolically    rare    shown    demonstration    phosphopantetheine    add    induction    efficient    donor    interactions    expression    protein    exploited    biochemical    unexplored    epigenetics    lack    faulty    enzymes    histone    enzyme    highlighting    dna    cellular    translational    therapeutic    appropriate    characterised    advantage    epigenetic    recognise    sekirnik    enrichment    dr    bypassing    international    probe    backgrounds    precursor    progress    synthesis    post    chemical    previously    ppt    position    partnership    permeable    rapid    metabolomics    electrostatically    gene    doses    native    synthesising    coa    interplay    endogenous    inducing    disorder   

Project "M-DrivE" data sheet

The following table provides information about the project.

Coordinator
ACIES BIO BIOTEHNOLOSKE RAZISKAVE IN RAZVOJ DOO 

Organization address
address: TEHNOLOSKI PARK 21
city: LJUBLJANA
postcode: 1000
website: www.aciesbio.com

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Slovenia [SI]
 Total cost 157˙287 €
 EC max contribution 157˙287 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-SE
 Starting year 2018
 Duration (year-month-day) from 2018-05-01   to  2020-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    ACIES BIO BIOTEHNOLOSKE RAZISKAVE IN RAZVOJ DOO SI (LJUBLJANA) coordinator 157˙287.00

Map

 Project objective

Post-translational chemical modifications to histone proteins – the storage units of DNA – influence gene expression electrostatically and through specific protein-protein interactions, the study of which is known as epigenetics. Although many enzymes have been identified which add, remove or recognise these modifications, the implication of metabolism in the induction of epigenetic states is a recent development – particularly highlighting acetyl coenzyme A (CoA) as the sole donor for acetylation. Due to the lack of appropriate biochemical tools, this emerging field has not yet been exploited, however Acies Bio’s leading work on the efficient synthesis of 4’ phosphopantetheine (4-PPT), a natural precursor of the prolific substrate CoA, places us in a unique position to realise the novel approach of metabolically inducing epigenetic modifications. In progress towards therapeutic use bypassing faulty metabolism in a rare genetic disorder, we have shown that 4-PPT is cell permeable, serum-stable, tolerated at high doses without side-effects, and can also upregulate histone acetylation. This presents a previously unexplored route to develop 4-PPT as a novel vehicle for the delivery of diverse intracellular acyl-CoA species, and subsequent histone modification. Taking advantage of the interplay between metabolic and epigenetic states, and the complementarity of backgrounds that Acies Bio and Dr Sekirnik can provide through an international partnership combining expertise in both fields, our proposed work would illuminate recently characterised histone acylations. By synthesising novel 4-PPT derivatives, and demonstrating their activity on a cellular and model organism level, we will develop new tools to enable rapid enrichment of rare endogenous modifications to probe their function. This would form the first demonstration of use of native enzyme substrates to affect epigenetic states, affording new European research opportunities in both metabolomics and epigenetics.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "M-DRIVE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "M-DRIVE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More  

SCAPA (2019)

Functional analysis of Alternative Polyadenylation during neuronal differentiation at single cell resolution

Read More  

ROMANCE (2020)

StRategies fOr iMproving Agronomic practices based oN miCrobiomEs.

Read More