Opendata, web and dolomites

M-DrivE TERMINATED

Metabolic Drivers of Epigenetic Modifications: metabolic inducers of histone post-translational modifications in a biological setting

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 M-DrivE project word cloud

Explore the words cloud of the M-DrivE project. It provides you a very rough idea of what is the project "M-DrivE" about.

ppt    organism    metabolomics    electrostatically    acies    influence    substrate    tools    tolerated    realise    remove    metabolism    first    upregulate    add    histone    sole    shown    derivatives    modifications    precursor    substrates    species    synthesis    therapeutic    epigenetics    previously    bypassing    interactions    induction    affording    phosphopantetheine    stable    highlighting    implication    metabolic    intracellular    places    combining    appropriate    rare    model    demonstrating    bio    inducing    modification    units    biochemical    permeable    complementarity    demonstration    probe    protein    epigenetic    cellular    efficient    chemical    metabolically    storage    coenzyme    coa    donor    disorder    enzymes    exploited    proteins    expertise    rapid    acetylation    dna    unexplored    sekirnik    illuminate    serum    enrichment    international    enzyme    progress    post    form    acylations    prolific    characterised    diverse    doses    position    interplay    synthesising    lack    endogenous    function    faulty    genetic    gene    acyl    backgrounds    cell    dr    advantage    recognise    vehicle    translational    subsequent    route    partnership    expression    native    natural    acetyl   

Project "M-DrivE" data sheet

The following table provides information about the project.

Coordinator
ACIES BIO BIOTEHNOLOSKE RAZISKAVE IN RAZVOJ DOO 

Organization address
address: TEHNOLOSKI PARK 21
city: LJUBLJANA
postcode: 1000
website: www.aciesbio.com

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Slovenia [SI]
 Total cost 157˙287 €
 EC max contribution 157˙287 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-SE
 Starting year 2018
 Duration (year-month-day) from 2018-05-01   to  2020-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    ACIES BIO BIOTEHNOLOSKE RAZISKAVE IN RAZVOJ DOO SI (LJUBLJANA) coordinator 157˙287.00

Map

 Project objective

Post-translational chemical modifications to histone proteins – the storage units of DNA – influence gene expression electrostatically and through specific protein-protein interactions, the study of which is known as epigenetics. Although many enzymes have been identified which add, remove or recognise these modifications, the implication of metabolism in the induction of epigenetic states is a recent development – particularly highlighting acetyl coenzyme A (CoA) as the sole donor for acetylation. Due to the lack of appropriate biochemical tools, this emerging field has not yet been exploited, however Acies Bio’s leading work on the efficient synthesis of 4’ phosphopantetheine (4-PPT), a natural precursor of the prolific substrate CoA, places us in a unique position to realise the novel approach of metabolically inducing epigenetic modifications. In progress towards therapeutic use bypassing faulty metabolism in a rare genetic disorder, we have shown that 4-PPT is cell permeable, serum-stable, tolerated at high doses without side-effects, and can also upregulate histone acetylation. This presents a previously unexplored route to develop 4-PPT as a novel vehicle for the delivery of diverse intracellular acyl-CoA species, and subsequent histone modification. Taking advantage of the interplay between metabolic and epigenetic states, and the complementarity of backgrounds that Acies Bio and Dr Sekirnik can provide through an international partnership combining expertise in both fields, our proposed work would illuminate recently characterised histone acylations. By synthesising novel 4-PPT derivatives, and demonstrating their activity on a cellular and model organism level, we will develop new tools to enable rapid enrichment of rare endogenous modifications to probe their function. This would form the first demonstration of use of native enzyme substrates to affect epigenetic states, affording new European research opportunities in both metabolomics and epigenetics.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "M-DRIVE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "M-DRIVE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CYBERSECURITY (2018)

Cyber Security Behaviours

Read More  

POLINGO (2018)

The Politics of Legitimacy: Non-partisan global governance and networked INGO power in the global governance of post-war states

Read More  

SAInTHz (2020)

Structuration of aqueous interfaces by Terahertz pulses: A study by Second Harmonic and Sum Frequency Generation

Read More