Opendata, web and dolomites

M-DrivE TERMINATED

Metabolic Drivers of Epigenetic Modifications: metabolic inducers of histone post-translational modifications in a biological setting

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 M-DrivE project word cloud

Explore the words cloud of the M-DrivE project. It provides you a very rough idea of what is the project "M-DrivE" about.

doses    route    acyl    combining    highlighting    modification    inducing    histone    interplay    natural    metabolic    tolerated    recognise    post    synthesis    coa    vehicle    probe    sole    substrates    progress    advantage    therapeutic    demonstration    upregulate    expertise    appropriate    add    acetylation    expression    translational    illuminate    function    precursor    metabolism    efficient    partnership    gene    metabolomics    diverse    realise    coenzyme    rare    modifications    storage    demonstrating    permeable    electrostatically    sekirnik    shown    cellular    affording    organism    model    previously    acylations    epigenetics    ppt    genetic    faulty    native    characterised    tools    chemical    bypassing    enrichment    bio    substrate    derivatives    dr    proteins    serum    metabolically    prolific    subsequent    position    acetyl    influence    biochemical    interactions    disorder    dna    rapid    units    exploited    protein    form    lack    unexplored    international    complementarity    induction    donor    backgrounds    places    acies    implication    intracellular    first    endogenous    species    cell    enzyme    enzymes    synthesising    phosphopantetheine    stable    remove    epigenetic   

Project "M-DrivE" data sheet

The following table provides information about the project.

Coordinator
ACIES BIO BIOTEHNOLOSKE RAZISKAVE IN RAZVOJ DOO 

Organization address
address: TEHNOLOSKI PARK 21
city: LJUBLJANA
postcode: 1000
website: www.aciesbio.com

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Slovenia [SI]
 Total cost 157˙287 €
 EC max contribution 157˙287 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-SE
 Starting year 2018
 Duration (year-month-day) from 2018-05-01   to  2020-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    ACIES BIO BIOTEHNOLOSKE RAZISKAVE IN RAZVOJ DOO SI (LJUBLJANA) coordinator 157˙287.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

Post-translational chemical modifications to histone proteins – the storage units of DNA – influence gene expression electrostatically and through specific protein-protein interactions, the study of which is known as epigenetics. Although many enzymes have been identified which add, remove or recognise these modifications, the implication of metabolism in the induction of epigenetic states is a recent development – particularly highlighting acetyl coenzyme A (CoA) as the sole donor for acetylation. Due to the lack of appropriate biochemical tools, this emerging field has not yet been exploited, however Acies Bio’s leading work on the efficient synthesis of 4’ phosphopantetheine (4-PPT), a natural precursor of the prolific substrate CoA, places us in a unique position to realise the novel approach of metabolically inducing epigenetic modifications. In progress towards therapeutic use bypassing faulty metabolism in a rare genetic disorder, we have shown that 4-PPT is cell permeable, serum-stable, tolerated at high doses without side-effects, and can also upregulate histone acetylation. This presents a previously unexplored route to develop 4-PPT as a novel vehicle for the delivery of diverse intracellular acyl-CoA species, and subsequent histone modification. Taking advantage of the interplay between metabolic and epigenetic states, and the complementarity of backgrounds that Acies Bio and Dr Sekirnik can provide through an international partnership combining expertise in both fields, our proposed work would illuminate recently characterised histone acylations. By synthesising novel 4-PPT derivatives, and demonstrating their activity on a cellular and model organism level, we will develop new tools to enable rapid enrichment of rare endogenous modifications to probe their function. This would form the first demonstration of use of native enzyme substrates to affect epigenetic states, affording new European research opportunities in both metabolomics and epigenetics.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "M-DRIVE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "M-DRIVE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

RealFlex (2019)

Real-time simulator-driver design and manufacturing based on flexible systems

Read More  

TheaTheor (2018)

Theorizing the Production of 'Comedia Nueva': The Process of Play Configuration in Spanish Golden Age Theater

Read More  

IRF4 Degradation (2019)

Using a novel protein degradation approach to uncover IRF4-regulated genes in plasma cells

Read More