Opendata, web and dolomites

QUSON SIGNED

Quantum Sensing with Quantum Optical Networks

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 QUSON project word cloud

Explore the words cloud of the QUSON project. It provides you a very rough idea of what is the project "QUSON" about.

equilibrium    sensitivity    phonons    lasers    coupling    preliminary    approximations    driving    goals    theoretical    decay    proposals    free    never    cavity    trapped    emergent    question    quantum    sensing    interactions    transitions    systematically    accurately    rigorous    decade    coupled    qubit    metrological    external    cooperative    multistability    dissipative    limit    sensors    photonic    phenomena    qubits    firstly    properly    last    secondly    regimes    circuits    networks    close    dynamics    quasi    photons    cavities    microwave    arises    platforms    exploits    noise    ultra    points    body    mean    magnetic    scenarios    realistic    numerical    technique    generation    entanglement    induce    setups    forces    corresponding    weak    accurate    matrix    abrupt    exact    description    protocols    limits    experimental    correlations    leads    dissipation    resonators    superconducting    theory    reference    performance    radiative    network    ion    describe   

Project "QUSON" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-06-04   to  2020-06-03

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 183˙454.00
2    THE UNIVERSITY OF SUSSEX UK (BRIGHTON) participant 0.00

Map

 Project objective

Quantum sensing exploits effects such as entanglement to enhance the sensitivity of measurement devices. In the last decade we have witnessed a significant advance in experimental platforms such as trapped ion setups and superconducting circuits. These systems are never free from noise and dissipation, however, interactions between qubits and photons or phonons can be controlled with lasers or external fields. Even in strong dissipative regimes, cooperative effects may induce complex quantum dynamics with emergent phenomena such as non-equilibrium phase transitions and multistability. The question then arises whether we can exploit those many-body effects in robust metrological protocols. My project will address this question in two main scenarios corresponding to different limits of a network of qubits coupled to photonic cavities. Firstly, I will consider a limit of weak coupling, in which cooperative radiative decay leads to the generation of entanglement. Secondly, I will investigate networks of qubits strongly coupled to photonic cavities. I will identify, and systematically investigate, points close to non-equilibrium phase transitions in which the abrupt response of the system can be used to accurately measure properties of driving fields. The project requires a rigorous theoretical description of the qubit-cavity network. Approximations such as a mean-field theory can be used for a preliminary study. However, to achieve my goals I will need to properly describe quantum correlations across the system. I will address this challenge by using Matrix Product States methods - an advanced quasi-exact numerical technique. My reference systems will be trapped ion setups and superconducting qubits coupled to microwave resonators. In my project, I will systematically investigate their performance as quantum sensors under realistic conditions. My work will lead to proposals for the accurate measurement of microwave fields, magnetic fields and ultra-weak forces.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "QUSON" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "QUSON" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

TheaTheor (2018)

Theorizing the Production of 'Comedia Nueva': The Process of Play Configuration in Spanish Golden Age Theater

Read More  

MarshFlux (2020)

The effect of future global climate and land-use change on greenhouse gas fluxes and microbial processes in salt marshes

Read More  

IRF4 Degradation (2019)

Using a novel protein degradation approach to uncover IRF4-regulated genes in plasma cells

Read More