Opendata, web and dolomites

QUSON SIGNED

Quantum Sensing with Quantum Optical Networks

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 QUSON project word cloud

Explore the words cloud of the QUSON project. It provides you a very rough idea of what is the project "QUSON" about.

theory    multistability    theoretical    metrological    setups    correlations    numerical    quantum    ultra    scenarios    sensing    photonic    cavity    radiative    experimental    proposals    exploits    emergent    exact    magnetic    weak    points    free    generation    never    induce    circuits    question    close    decade    sensitivity    lasers    platforms    accurate    forces    ion    external    dynamics    goals    secondly    corresponding    technique    abrupt    dissipative    equilibrium    sensors    limits    systematically    rigorous    limit    phenomena    networks    superconducting    preliminary    approximations    driving    regimes    matrix    qubits    body    cooperative    transitions    properly    reference    network    coupling    decay    coupled    entanglement    cavities    photons    description    microwave    mean    noise    realistic    leads    performance    interactions    describe    quasi    last    protocols    dissipation    phonons    qubit    arises    accurately    resonators    firstly    trapped   

Project "QUSON" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-06-04   to  2020-06-03

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 183˙454.00
2    THE UNIVERSITY OF SUSSEX UK (BRIGHTON) participant 0.00

Map

 Project objective

Quantum sensing exploits effects such as entanglement to enhance the sensitivity of measurement devices. In the last decade we have witnessed a significant advance in experimental platforms such as trapped ion setups and superconducting circuits. These systems are never free from noise and dissipation, however, interactions between qubits and photons or phonons can be controlled with lasers or external fields. Even in strong dissipative regimes, cooperative effects may induce complex quantum dynamics with emergent phenomena such as non-equilibrium phase transitions and multistability. The question then arises whether we can exploit those many-body effects in robust metrological protocols. My project will address this question in two main scenarios corresponding to different limits of a network of qubits coupled to photonic cavities. Firstly, I will consider a limit of weak coupling, in which cooperative radiative decay leads to the generation of entanglement. Secondly, I will investigate networks of qubits strongly coupled to photonic cavities. I will identify, and systematically investigate, points close to non-equilibrium phase transitions in which the abrupt response of the system can be used to accurately measure properties of driving fields. The project requires a rigorous theoretical description of the qubit-cavity network. Approximations such as a mean-field theory can be used for a preliminary study. However, to achieve my goals I will need to properly describe quantum correlations across the system. I will address this challenge by using Matrix Product States methods - an advanced quasi-exact numerical technique. My reference systems will be trapped ion setups and superconducting qubits coupled to microwave resonators. In my project, I will systematically investigate their performance as quantum sensors under realistic conditions. My work will lead to proposals for the accurate measurement of microwave fields, magnetic fields and ultra-weak forces.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "QUSON" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "QUSON" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

RAMBEA (2019)

Realistic Assessment of Historical Masonry Bridges under Extreme Environmental Actions

Read More  

FARMACCOUNTA (2019)

Farm Accountancy Data as a Source for the History of European Agriculture

Read More  

ActinSensor (2019)

Identification and characterization of a novel damage sensor for cytoskeletal proteins in Drosophila

Read More