Opendata, web and dolomites


Photonic integrated quantum transceivers

Total Cost €


EC-Contrib. €






 PINQS project word cloud

Explore the words cloud of the PINQS project. It provides you a very rough idea of what is the project "PINQS" about.

infrastructure    components    single    multiplexing    act    stringent    computers    simulations    shift    compatibility    purpose    hybrid    individual    upscaling    wavelength    optics    remote    communication    nanoscale    nanotubes    distributed    optical    processors    barriers    largely    broadband    quantum    form    boosted    devised    scalable    heterogeneously    optomechanical    limitations    magnitude    orders    interconnected    functional    circuits    realize    chips    attractive    overcome    nanophotonic    nodes    links    internet    physical    implementing    simulation    nanostructures    superconducting    paradigm    experimental    conquer    envisioned    photonic    modules    fibre    networks    reconfigurable    fiber    linear    speed    photons    division    ultimate    circuit    rates    nanophotonics    photon    of    intractable    electro    technologies    integration    relying    replicable    computing    dimensional    realization    unexplored    carbon    transceivers    interactions    transceiver    bandwidth   

Project "PINQS" data sheet

The following table provides information about the project.


Organization address
city: Munster
postcode: 48149

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙989˙812 €
 EC max contribution 1˙989˙812 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-COG
 Funding Scheme ERC-COG
 Starting year 2017
 Duration (year-month-day) from 2017-05-01   to  2022-04-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Quantum processors are envisioned to conquer ultimate challenges in information processing and to enable simulations of complex physical processes that are intractable with classical computers. Among the various experimental approaches to implement such devices, scalable technologies are particularly promising because they allow for the realization of large numbers of quantum components in circuit form. For upscaling towards functional applications distributed systems will be needed to overcome stringent limitations in quantum control, provided that high-bandwidth quantum links can be established between the individual nodes. For this purpose the use of single photons is especially attractive due to compatibility with existing fibre-optical infrastructure. However, their use in replicable, integrated optical circuits remains largely unexplored for non-classical applications. In this project nanophotonic circuits, heterogeneously integrated with superconducting nanostructures and carbon nanotubes, will be used to realize scalable quantum photonic chips that overcome major barriers in linear quantum optics and quantum communication. By relying on electro-optomechanical and electro-optical interactions, reconfigurable single photon transceivers will be devised that can act as broadband and high bandwidth nodes in future quantum optical networks. A hybrid integration approach will allow for the realization of fully functional quantum photonic modules which are interconnected with optical fiber links. By implementing quantum wavelength division multiplexing, the communication rates between individual transceiver nodes will be boosted by orders of magnitude, thus allowing for high-speed and remote quantum information processing and quantum simulation. Further exploiting recent advances in three-dimensional distributed nanophotonics will lead to a paradigm shift in nanoscale quantum optics, providing a key step towards optical quantum computing and the quantum internet.


year authors and title journal last update
List of publications.
2019 J. Feldmann, N. Youngblood, C.D. Wright, H. Bhaskaran, and W.H.P. Pernice
All-optical spiking neurosynaptic networks with self-learning capabilities
published pages: , ISSN: 1476-4687, DOI:
Nature 2020-02-20

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PINQS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PINQS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

FuncMAB (2019)

High-throughput single-cell phenotypic analysis of functional antibody repertoires

Read More  

ImmUne (2019)

Towards identification of the unifying principles of vertebrate adaptive immunity

Read More  

DYNAPOL (2019)

Modeling approaches toward bioinspired dynamic materials

Read More