Opendata, web and dolomites

PINQS SIGNED

Photonic integrated quantum transceivers

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PINQS project word cloud

Explore the words cloud of the PINQS project. It provides you a very rough idea of what is the project "PINQS" about.

integration    reconfigurable    processors    optical    implementing    limitations    broadband    superconducting    remote    physical    upscaling    conquer    single    interconnected    overcome    of    technologies    simulations    purpose    stringent    fiber    largely    computers    circuit    dimensional    photons    circuits    optomechanical    optics    interactions    paradigm    computing    functional    transceiver    ultimate    hybrid    compatibility    transceivers    bandwidth    networks    boosted    envisioned    links    nodes    form    infrastructure    fibre    photon    orders    carbon    communication    individual    wavelength    linear    act    realization    internet    nanostructures    nanophotonic    barriers    nanoscale    modules    shift    unexplored    chips    photonic    replicable    division    heterogeneously    electro    magnitude    multiplexing    scalable    nanotubes    attractive    devised    distributed    components    nanophotonics    quantum    realize    intractable    speed    relying    experimental    rates    simulation   

Project "PINQS" data sheet

The following table provides information about the project.

Coordinator
WESTFAELISCHE WILHELMS-UNIVERSITAET MUENSTER 

Organization address
address: SCHLOSSPLATZ 2
city: Munster
postcode: 48149
website: www.uni-muenster.de/en/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙989˙812 €
 EC max contribution 1˙989˙812 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-COG
 Funding Scheme ERC-COG
 Starting year 2017
 Duration (year-month-day) from 2017-05-01   to  2022-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    WESTFAELISCHE WILHELMS-UNIVERSITAET MUENSTER DE (Munster) coordinator 1˙989˙812.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

Quantum processors are envisioned to conquer ultimate challenges in information processing and to enable simulations of complex physical processes that are intractable with classical computers. Among the various experimental approaches to implement such devices, scalable technologies are particularly promising because they allow for the realization of large numbers of quantum components in circuit form. For upscaling towards functional applications distributed systems will be needed to overcome stringent limitations in quantum control, provided that high-bandwidth quantum links can be established between the individual nodes. For this purpose the use of single photons is especially attractive due to compatibility with existing fibre-optical infrastructure. However, their use in replicable, integrated optical circuits remains largely unexplored for non-classical applications. In this project nanophotonic circuits, heterogeneously integrated with superconducting nanostructures and carbon nanotubes, will be used to realize scalable quantum photonic chips that overcome major barriers in linear quantum optics and quantum communication. By relying on electro-optomechanical and electro-optical interactions, reconfigurable single photon transceivers will be devised that can act as broadband and high bandwidth nodes in future quantum optical networks. A hybrid integration approach will allow for the realization of fully functional quantum photonic modules which are interconnected with optical fiber links. By implementing quantum wavelength division multiplexing, the communication rates between individual transceiver nodes will be boosted by orders of magnitude, thus allowing for high-speed and remote quantum information processing and quantum simulation. Further exploiting recent advances in three-dimensional distributed nanophotonics will lead to a paradigm shift in nanoscale quantum optics, providing a key step towards optical quantum computing and the quantum internet.

 Publications

year authors and title journal last update
List of publications.
2019 J. Feldmann, N. Youngblood, C.D. Wright, H. Bhaskaran, and W.H.P. Pernice
All-optical spiking neurosynaptic networks with self-learning capabilities
published pages: , ISSN: 1476-4687, DOI:
Nature 2020-02-20

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PINQS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PINQS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

SLAMseq (2019)

SLAMseq: Temporal resolution in gene expression profiling across multiple platforms

Read More  

ENTRAPMENT (2019)

Septins: from bacterial entrapment to cellular immunity

Read More  

SmartForests (2020)

Smart Forests: Transforming Environments into Social-Political Technologies

Read More