Opendata, web and dolomites


Photonic integrated quantum transceivers

Total Cost €


EC-Contrib. €






 PINQS project word cloud

Explore the words cloud of the PINQS project. It provides you a very rough idea of what is the project "PINQS" about.

attractive    circuits    technologies    nanoscale    functional    barriers    magnitude    broadband    communication    dimensional    overcome    division    processors    single    optics    reconfigurable    physical    nanophotonics    infrastructure    multiplexing    stringent    relying    nanophotonic    interactions    fibre    quantum    optomechanical    bandwidth    networks    realize    chips    links    purpose    replicable    photonic    heterogeneously    linear    components    distributed    simulation    remote    realization    photons    compatibility    devised    envisioned    nanostructures    modules    intractable    optical    largely    nanotubes    shift    interconnected    computers    conquer    superconducting    act    transceiver    experimental    speed    fiber    upscaling    rates    form    scalable    hybrid    wavelength    transceivers    individual    internet    of    paradigm    unexplored    carbon    ultimate    limitations    simulations    computing    implementing    photon    nodes    circuit    electro    orders    boosted    integration   

Project "PINQS" data sheet

The following table provides information about the project.


Organization address
city: Munster
postcode: 48149

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙989˙812 €
 EC max contribution 1˙989˙812 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-COG
 Funding Scheme ERC-COG
 Starting year 2017
 Duration (year-month-day) from 2017-05-01   to  2022-04-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Quantum processors are envisioned to conquer ultimate challenges in information processing and to enable simulations of complex physical processes that are intractable with classical computers. Among the various experimental approaches to implement such devices, scalable technologies are particularly promising because they allow for the realization of large numbers of quantum components in circuit form. For upscaling towards functional applications distributed systems will be needed to overcome stringent limitations in quantum control, provided that high-bandwidth quantum links can be established between the individual nodes. For this purpose the use of single photons is especially attractive due to compatibility with existing fibre-optical infrastructure. However, their use in replicable, integrated optical circuits remains largely unexplored for non-classical applications. In this project nanophotonic circuits, heterogeneously integrated with superconducting nanostructures and carbon nanotubes, will be used to realize scalable quantum photonic chips that overcome major barriers in linear quantum optics and quantum communication. By relying on electro-optomechanical and electro-optical interactions, reconfigurable single photon transceivers will be devised that can act as broadband and high bandwidth nodes in future quantum optical networks. A hybrid integration approach will allow for the realization of fully functional quantum photonic modules which are interconnected with optical fiber links. By implementing quantum wavelength division multiplexing, the communication rates between individual transceiver nodes will be boosted by orders of magnitude, thus allowing for high-speed and remote quantum information processing and quantum simulation. Further exploiting recent advances in three-dimensional distributed nanophotonics will lead to a paradigm shift in nanoscale quantum optics, providing a key step towards optical quantum computing and the quantum internet.


year authors and title journal last update
List of publications.
2019 J. Feldmann, N. Youngblood, C.D. Wright, H. Bhaskaran, and W.H.P. Pernice
All-optical spiking neurosynaptic networks with self-learning capabilities
published pages: , ISSN: 1476-4687, DOI:
Nature 2020-02-20

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PINQS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PINQS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

InsideChromatin (2019)

Towards Realistic Modelling of Nucleosome Organization Inside Functional Chromatin Domains

Read More  

EVOMENS (2020)

The evolution of menstruation in primates

Read More  


Dynamic Modeling of Labor Market Mobility and Human Capital Accumulation

Read More