Opendata, web and dolomites

PINQS SIGNED

Photonic integrated quantum transceivers

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PINQS project word cloud

Explore the words cloud of the PINQS project. It provides you a very rough idea of what is the project "PINQS" about.

processors    heterogeneously    nanotubes    nodes    nanostructures    broadband    paradigm    largely    links    optomechanical    wavelength    dimensional    envisioned    nanophotonic    photon    individual    fibre    single    upscaling    multiplexing    circuits    simulation    simulations    interactions    nanoscale    act    transceivers    functional    optical    division    realize    magnitude    limitations    interconnected    hybrid    networks    shift    rates    conquer    computers    intractable    quantum    attractive    computing    of    ultimate    relying    form    physical    overcome    circuit    realization    nanophotonics    chips    boosted    unexplored    purpose    replicable    scalable    communication    remote    infrastructure    photonic    fiber    bandwidth    devised    technologies    compatibility    transceiver    internet    reconfigurable    integration    photons    orders    distributed    optics    carbon    electro    stringent    speed    modules    experimental    implementing    superconducting    components    barriers    linear   

Project "PINQS" data sheet

The following table provides information about the project.

Coordinator
WESTFAELISCHE WILHELMS-UNIVERSITAET MUENSTER 

Organization address
address: SCHLOSSPLATZ 2
city: Munster
postcode: 48149
website: www.uni-muenster.de/en/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙989˙812 €
 EC max contribution 1˙989˙812 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-COG
 Funding Scheme ERC-COG
 Starting year 2017
 Duration (year-month-day) from 2017-05-01   to  2022-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    WESTFAELISCHE WILHELMS-UNIVERSITAET MUENSTER DE (Munster) coordinator 1˙989˙812.00

Map

 Project objective

Quantum processors are envisioned to conquer ultimate challenges in information processing and to enable simulations of complex physical processes that are intractable with classical computers. Among the various experimental approaches to implement such devices, scalable technologies are particularly promising because they allow for the realization of large numbers of quantum components in circuit form. For upscaling towards functional applications distributed systems will be needed to overcome stringent limitations in quantum control, provided that high-bandwidth quantum links can be established between the individual nodes. For this purpose the use of single photons is especially attractive due to compatibility with existing fibre-optical infrastructure. However, their use in replicable, integrated optical circuits remains largely unexplored for non-classical applications. In this project nanophotonic circuits, heterogeneously integrated with superconducting nanostructures and carbon nanotubes, will be used to realize scalable quantum photonic chips that overcome major barriers in linear quantum optics and quantum communication. By relying on electro-optomechanical and electro-optical interactions, reconfigurable single photon transceivers will be devised that can act as broadband and high bandwidth nodes in future quantum optical networks. A hybrid integration approach will allow for the realization of fully functional quantum photonic modules which are interconnected with optical fiber links. By implementing quantum wavelength division multiplexing, the communication rates between individual transceiver nodes will be boosted by orders of magnitude, thus allowing for high-speed and remote quantum information processing and quantum simulation. Further exploiting recent advances in three-dimensional distributed nanophotonics will lead to a paradigm shift in nanoscale quantum optics, providing a key step towards optical quantum computing and the quantum internet.

 Publications

year authors and title journal last update
List of publications.
2019 J. Feldmann, N. Youngblood, C.D. Wright, H. Bhaskaran, and W.H.P. Pernice
All-optical spiking neurosynaptic networks with self-learning capabilities
published pages: , ISSN: 1476-4687, DOI:
Nature 2020-02-20

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PINQS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PINQS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Cu4Peroxide (2020)

The electrochemical synthesis of hydrogen peroxide

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

SPECTRODOT (2018)

Hand-held broadband hybrid graphene-quantum dots spectrometer

Read More