Opendata, web and dolomites

NEUROMODEL SIGNED

Statistical Modelling for relating multimodal neuroimaging to clinical outcomes in order to predict patient response to depression therapy.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NEUROMODEL project word cloud

Explore the words cloud of the NEUROMODEL project. It provides you a very rough idea of what is the project "NEUROMODEL" about.

disability    selective    medicine    treatments    imaging    neurobiology    gaussian    therapy    every    positron    integrate    predict    intervention    model    psychological    perfectly    drug    fmri    posit    lvm    treatment    involve    deal    longitudinal    50    latent    resonance    patient    europeans    15    outcomes    depressed    images    ssri    expand    flexible    single    followed    genetic    combines    multimodal    statistical    chosen    forms    uniquely    identification    variables    resolution    insufficient    data    serotonin    acquired    combination    situated    depression    patients    ultimate    reuptake    individuals    emission    cohort    life    biomarkers    individualized    complexity    mdd    latter    magnetic    functional    pet    personalized    suffer    later    host    adjusted    types    dimensional    database    tomography    foundation    linear    healthy    inhibitor    brain    neuropsychological    outcome    exist    heterogeneous    relationships    environmental    adapt   

Project "NEUROMODEL" data sheet

The following table provides information about the project.

Coordinator
REGION HOVEDSTADEN 

Organization address
address: KONGENS VAENGE 2
city: HILLEROD
postcode: 3400
website: www.regionh.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Project website https://bozenne.github.io/Funding/
 Total cost 200˙194 €
 EC max contribution 200˙194 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-06-01   to  2019-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    REGION HOVEDSTADEN DK (HILLEROD) coordinator 200˙194.00

Map

 Project objective

Every year, 1 out of 15 Europeans suffer from major depression (MDD) and MDD is the third cause of Disability-adjusted life-years. Today, the available treatments are clearly insufficient; only about 50% of MDD patients respond to drug intervention. We here posit that identification of biomarkers that can predict treatment response is needed to adapt a personalized medicine approach, and most likely this will involve not a single outcome but a combination of multimodal brain imaging outcomes, psychological, genetic, and environmental data. The complexity of such data requires a complex statistical model that currently does not exist. Thus, my aim is to develop a new flexible statistical method that can take into account heterogeneous types of data. More specifically, I will develop a fully flexible Latent Variable Model (LVM) that can deal with high dimensional measurements (e.g. images), non-Gaussian variables, and non-linear relationships. I will apply this flexible LVM on existing data from depressed and healthy individuals and later expand the application to predict treatment outcomes. The latter data are currently acquired and includes a cohort of MDD patients treated with a selective serotonin reuptake inhibitor (SSRI), followed in a longitudinal design. The chosen host institution is perfectly situated to this project, as they have an established unique database including, e.g., functional Magnetic Resonance Imaging (fMRI), high resolution Positron Emission Tomography (PET), and neuropsychological test outcomes. This research project uniquely combines advanced statistical modelling of rich data sets with the ultimate aim to establish individualized depression therapy. Moreover, it forms a foundation for a more general approach to integrate brain neurobiology in terms of imaging outcomes with other patient-specific data.

 Publications

year authors and title journal last update
List of publications.
2019 Martin K. Madsen, Patrick M. Fisher, Daniel Burmester, Agnete Dyssegaard, Dea S. Stenbæk, Sara Kristiansen, Sys S. Johansen, Sczabolz Lehel, Kristian Linnet, Claus Svarer, David Erritzoe, Brice Ozenne, Gitte M. Knudsen
Psychedelic effects of psilocybin correlate with serotonin 2A receptor occupancy and plasma psilocin levels
published pages: 1328-1334, ISSN: 0893-133X, DOI: 10.1038/s41386-019-0324-9
Neuropsychopharmacology 44/7 2019-09-02
2019 S. E. Ebert, P. Jensen, B. Ozenne, S. Armand, C. Svarer, D. S. Stenbaek, K. Moeller, A. Dyssegaard, G. Thomsen, J. Steinmetz, B. H. Forchhammer, G. M. Knudsen, L. H. Pinborg
Molecular imaging of neuroinflammation in patients after mild traumatic brain injury: a longitudinal 123 I‐CLINDE single photon emission computed tomography study
published pages: , ISSN: 1351-5101, DOI: 10.1111/ene.13971
European Journal of Neurology 2019-09-02
2019 Martin Nørgaard, Brice Ozenne, Claus Svarer, Stephen C. Strother, Vibe G. Frokjaer, Gitte M. Knudsen, and Melanie Ganz
Preprocessing, prediction and significance: Framework and application to brain imaging
published pages: , ISSN: , DOI:
2019-09-02

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NEUROMODEL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NEUROMODEL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

EVOMET (2019)

The rise and fall of metastatic clones under immune attack

Read More  

EpiSeq (2019)

Single molecule sequencing and biophysical properties of oxidized genomic DNA using magnetic tweezers.

Read More  

RipGEESE (2020)

Identifying the ripples of gene regulation evolution in the evolution of gene sequences to determine when animal nervous systems evolved

Read More