Opendata, web and dolomites

MONSON TERMINATED

Ultrathin Mixed Matrix Membranes (MMMs) Derived from Metal-Organic Framework (MOF) Nanosheets for Organic Solvent Nanofiltration (OSN)

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MONSON project word cloud

Explore the words cloud of the MONSON project. It provides you a very rough idea of what is the project "MONSON" about.

2020    smart    cross    obstacle    consumption    mutually    quality    microstructural    energy    cut    heart    polymer    stability    lack    curves    optimization    metal    separation    career    optimum    mixed    weight    performance    cooperation    expertise    sub    generation    finely    liquid    possibilities    mof    host    full    technology    potentially    organic    nm    selectivity    colleagues    synthesis    inclusive    excellent    membranes    sustainable    create    horizons    materials    membrane    ultrafast    breakthroughs    conventional    nanofiltration    composites    films    permeation    structures    ultrathin    thick    sieve    network    networks    off    rational    half    thin    beneficial    tunable    form    stable    solvent    molecular    complementary    flux    nanosheet    performances    efficiency    matrix    original    group    brings    distillation    functional    strategy    fabrication    enriching    mmms    combining    mwco    comprising    innovative    nanosheets    oriented    framework    broadening    osn    china    linked   

Project "MONSON" data sheet

The following table provides information about the project.

Coordinator
IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE 

Organization address
address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ
website: http://www.imperial.ac.uk/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-12-01   to  2019-11-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE UK (LONDON) coordinator 195˙454.00

Map

 Project objective

Energy efficiency is at the heart of the EU’s 2020 Strategy for smart, sustainable and inclusive growth. Organic solvent nanofiltration (OSN) technology is an emerging technology that can potentially achieve organic liquid separation on a molecular scale with less than half the energy consumption than conventional distillation processes. The main obstacle is the lack of OSN membrane materials with three key properties: high flux; high selectivity; and excellent stability. This project seeks to develop ultrathin OSN membranes comprising metal-organic framework (MOF) nanosheets in ultrathin polymer matrix in the form of mixed matrix membranes (MMMs). This research work is based on combining recent technology breakthroughs in: (i) 1-nm-thick MOF nanosheet based molecular sieve membranes, developed by the Applicant; and (ii) highly cross-linked sub-10-nm-thick OSN polymer membranes developed by the Host group. This is a timely and highly original research concept to create a new generation of high performances, and brings the full potential of MOF materials to the field of OSN membranes to produce highly stable OSN membranes with ultrafast solvent permeation and finely tunable (molecular weight cut-off) MWCO curves. In addition, the in-depth studies on controllable synthesis of MOF structures, rational design and synthesis of polymer networks, and microstructural optimization of MOF-polymer composites are expected to lead to application-oriented fabrication of high-performance membranes and functional thin films for a wide range of applications. This project will bring together the complementary expertise of both the applicant and the Host with the aim of developing mutually-beneficial research cooperation between Europe and China. This high-quality and highly innovative research will open up the optimum career possibilities for the applicant by broadening his research horizons, enriching his research experience, and strengthening his network with European colleagues.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MONSON" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MONSON" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

DEAP (2019)

Development of Epithelium Apical Polarity: Does the mechanical cell-cell adhesions play a role?

Read More  

MIRAGE (2019)

Measuring Interstellar Reactions of Aromatics by Gas-phase Experiments

Read More  

Migration Ethics (2019)

Migration Ethics

Read More