Opendata, web and dolomites

CHROMDOM SIGNED

Chromosomal domain formation, compartmentalization and architecture

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CHROMDOM project word cloud

Explore the words cloud of the CHROMDOM project. It provides you a very rough idea of what is the project "CHROMDOM" about.

smc    experiments    techniques    dimensional    interphase    regulatory    contact    previously    distant    platform    configuration    genes    loops    fidelity    throughput    reveal    ctcf    mechanism    regulation    dna    compartment    constricting    scaffolding    mutual    experimental    assay    loci    drive    technique    hierarchical    curtains    eukaryotic    capture    topologically    conformation    chromosomal    cohesin    demonstrated    form    hereditary    chromosome    reconstituted    structure    scarce    underlying    dynamics    complexes    interactions    3c    structural    structures    confined    complexity    scaffold    chiefly    hierarchically    accessible    single    clusters    expand    insulator    crosslinking    maintenance    coining    molecule    action    molecular    details    folding    folded    biochemical    otherwise    bound    inaccessible    proteins    compartments    chromatin    tads    insulators    genetic    gene    basis    chromosomes    organizing    organization    found    nested    genomic    resolve    establishment    bulk    revealed    domains   

Project "CHROMDOM" data sheet

The following table provides information about the project.

Coordinator
LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN 

Organization address
address: GESCHWISTER SCHOLL PLATZ 1
city: MUENCHEN
postcode: 80539
website: www.uni-muenchen.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙499˙350 €
 EC max contribution 1˙499˙350 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-STG
 Funding Scheme ERC-STG
 Starting year 2018
 Duration (year-month-day) from 2018-07-01   to  2023-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN DE (MUENCHEN) coordinator 1˙499˙350.00

Map

 Project objective

The three-dimensional organization of chromosomes is necessary for hereditary fidelity and gene regulation. Recent studies have found that eukaryotic interphase chromosomes are spatially organized in compartments, chiefly topologically associated domains (TADs), in a hierarchical order of nested chromatin loops, coining the term “chromosome folding”. TADs are clusters of genes and regulatory elements that are confined to their genomic compartment by spatially constricting their accessible range of action. The folded structure of chromosomes through long-range loops enables mutual interactions of distant genomic loci that otherwise would not be in contact. While crosslinking-based chromosome conformation capture (3C) techniques have revealed the underlying structure of interphase chromosomes, the molecular mechanism of how chromosome-organizing proteins, such as the insulator CTCF or the structural maintenance of chromosomes (SMC) complex cohesin build the chromosomal scaffold and contribute to genomic organization, is not understood. Due to the complexity of the processes involved, biochemical information on how chromosomal proteins contribute to the establishment of TADs is scarce. I have previously demonstrated that single molecule techniques can be used to study the interactions of single cohesin complexes with DNA, chromatin and DNA-bound proteins and to resolve processes that are inaccessible in bulk biochemical experiments. In this project, I will use and expand the high-throughput single molecule technique of DNA curtains to study the molecular details of how chromosomal scaffolding proteins and genetic insulators form the basis for the three-dimensional folding of chromosomes. My experiments will build a novel experimental platform to study the dynamics of chromosomal configuration and maintenance in a reconstituted single molecule assay and will reveal the molecular details that drive the organization of chromosomes into hierarchically organized structures.

 Publications

year authors and title journal last update
List of publications.
2019 Pilar Gutierrez-Escribano, Matthew D. Newton, Aida Llauró, Jonas Huber, Loredana Tanasie, Joseph Davy, Isabel Aly, Ricardo Aramayo, Alex Montoya, Holger Kramer, Johannes Stigler, David S. Rueda, Luis Aragon
A conserved ATP- and Scc2/4-dependent activity for cohesin in tethering DNA molecules
published pages: eaay6804, ISSN: 2375-2548, DOI: 10.1126/sciadv.aay6804
Science Advances 5/11 2020-03-05

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CHROMDOM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CHROMDOM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Cu4Peroxide (2020)

The electrochemical synthesis of hydrogen peroxide

Read More  

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More  

CUSTOMER (2019)

Customizable Embedded Real-Time Systems: Challenges and Key Techniques

Read More