Opendata, web and dolomites


Highly Integrated Nanoscale Robots for Targeted Delivery to the Central Nervous System

Total Cost €


EC-Contrib. €






 HINBOTS project word cloud

Explore the words cloud of the HINBOTS project. It provides you a very rough idea of what is the project "HINBOTS" about.

supramolecular    realizing    chassis    smart    sites    risk    invasive    decades    piezoelectrochemical    discomfort    machines    animal    harvesting    central    molecular    surface    robotics    reduce    active    redox    myriad    miniaturized    magnetic    machinery    entities    conventional    delivering    gates    environments    grafted    theatre    loaded    rewiring    payloads    perform    power    onto    nanorobots    gated    consists    media    functions    neural    sources    magnetoelectric    ultimate    nervous    electroresponsive    cargo    agents    small    external    integrate    structures    over    remotely    porous    nanomaterials    demonstrated    inorganic    ultimately    materials    fuel    ranging    made    act    platforms    therapeutic    sought    release    multiferroic    chemistry    models    assemblies    capitalizing    navigate    demand    triggered    first    acoustic    circuitry    moving    multifunctional    synthetic    interventions    time    create    electrostimulating    surrounding    minimally    micro    robots    host    multiferroics    piezoelectric   

Project "HINBOTS" data sheet

The following table provides information about the project.


Organization address
address: Raemistrasse 101
postcode: 8092

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 1˙998˙720 €
 EC max contribution 1˙998˙720 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-COG
 Funding Scheme ERC-COG
 Starting year 2018
 Duration (year-month-day) from 2018-09-01   to  2023-08-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Over the past two decades researchers have been working to create synthetic small-scale machines ranging from molecular entities or miniaturized structures, to more complex assemblies of micro- and nanomaterials. These machines are able to navigate in complex environments by harvesting fuel from the surrounding media or from external power sources. One of the most sought-after applications for these miniaturized machines is to perform minimally invasive interventions, in which these devices will ultimately reduce risk, cost, and discomfort compared to conventional interventions. This has driven researchers to produce a myriad of small-scale robots loaded with therapeutic cargo. While recent research has demonstrated the potential of these devices in animal models, a number of challenges remain in moving small-scale robots into the operating theatre. Here, we propose highly integrated nanorobots capable of realizing several functions on-demand by capitalizing on recent developments in small-scale robotics, multiferroics, supramolecular chemistry, and gated materials. These nanorobots will integrate a porous inorganic active chassis made of a piezoelectric or a magnetoelectric multiferroic that will host therapeutic agents, with redox or electroresponsive supramolecular gates that will control the release of payloads. We will demonstrate for the first time that redox- and electroresponsive supramolecular machinery grafted onto the surface of piezoelectric or multiferroic platforms can be remotely controlled by means of a piezoelectrochemical potential triggered by acoustic and magnetic fields. The ultimate goal of this research consists of creating smart multifunctional nanorobots, which will act on affected sites of the central nervous system by delivering therapeutic agents and electrostimulating the rewiring of neural circuitry.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HINBOTS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "HINBOTS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)


Using hidden genealogical structure to study the architecture of human disease

Read More  

HyperBio (2019)

Vis-NIR Hyperspectral imaging for biomaterial quality control

Read More  

PoreDetect (2020)

Bench-top system for detection and analysis of miRNA using solid-state nanopores

Read More