Opendata, web and dolomites

SMAC-MC SIGNED

Small Molecule Activation by Main-Group Compounds

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SMAC-MC project word cloud

Explore the words cloud of the SMAC-MC project. It provides you a very rough idea of what is the project "SMAC-MC" about.

readily    metal    perform    investigates    performing    water    nitrogen    pioneered    interesting    unreactive    species    position    earth    activating    transformations    carbon    transition    basic    suitable    molecule    diborenes    chemistry    catalysts    activate    grant    diradicaloids    cheap    fundamental    correlates    strengthen    singlet    adducts    diborene    dioxide    lewis    electrochemical    abundant    first    trapped    situ    many    chemical    revolves    investigations    examined    character    give    edge    practical    frustrated    concentrate    mechanisms    split    determined    entirely    breakthroughs    compares    group    clusters    consolidator    radical    base    possibility    consist    erc    form    pairs    ammonia    focusses    compounds    fourth    molecules    lower    observing    involve    activation    continue    subfield    packages    metalloid    cutting    reactivity    inorganic    small    overpotential    enzymes    hydrogen    reactive    significantly    scientific   

Project "SMAC-MC" data sheet

The following table provides information about the project.

Coordinator
JYVASKYLAN YLIOPISTO 

Organization address
address: SEMINAARINKATU 15
city: JYVASKYLA
postcode: 40100
website: http://www.jyu.fi

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Finland [FI]
 Total cost 1˙424˙190 €
 EC max contribution 1˙424˙190 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-COG
 Funding Scheme ERC-COG
 Starting year 2018
 Duration (year-month-day) from 2018-07-01   to  2023-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    JYVASKYLAN YLIOPISTO FI (JYVASKYLA) coordinator 1˙424˙190.00

Map

 Project objective

Many basic chemical processes involve the activation of small unreactive molecules, such as hydrogen, nitrogen, ammonia, water and carbon dioxide, by transition-metal-based catalysts or by enzymes. This proposal focusses on the interesting and recently observed possibility to perform similar transformations with main-group compounds that consist entirely of cheap earth-abundant elements. The proposed research is split into four work packages of which the first investigates the mechanisms by which different main-group singlet diradicaloids activate small molecules and how their reactivity correlates with their radical character. The second work package focusses on small molecule activation using main-group metalloid clusters, a new emerging field that we have recently pioneered, and compares the reactivity determined for main-group species with that known for related transition-metal clusters. Investigations in the third work package concentrate on the electrochemical reduction of carbon dioxide and on the possibility to lower the required overpotential with frustrated Lewis pairs that readily form adducts with small molecules. The fourth work package revolves around activating small molecules by diborenes and, in particular, observing novel reactivity in situ, that is, before the reactive diborene is trapped with a suitable Lewis base. Considered as a whole, the planned initiatives will enable significant breakthroughs in the design of novel main-group element based compounds for the activation of small molecules. The research is not only of fundamental scientific importance but also of potential practical value as many main-group systems, such as frustrated Lewis pairs, are currently being examined as novel catalysts. An ERC consolidator grant would significantly strengthen my position in this interesting subfield of inorganic chemistry and give my research group practical means to continue performing cutting-edge research.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SMAC-MC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SMAC-MC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Cu4Peroxide (2020)

The electrochemical synthesis of hydrogen peroxide

Read More  

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More  

SPECTRODOT (2018)

Hand-held broadband hybrid graphene-quantum dots spectrometer

Read More