Opendata, web and dolomites

TET2rec SIGNED

Mechanisms of TET2 DNA demethylase recruitment to specific genomic regions

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "TET2rec" data sheet

The following table provides information about the project.

Coordinator
KOBENHAVNS UNIVERSITET 

Organization address
address: NORREGADE 10
city: KOBENHAVN
postcode: 1165
website: www.ku.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 200˙194 €
 EC max contribution 200˙194 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-03-01   to  2020-02-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KOBENHAVNS UNIVERSITET DK (KOBENHAVN) coordinator 200˙194.00

Map

 Project objective

TET2 (Tet Methylcytosine Dioxygenase 2) is a DNA demethylase frequently mutated in patients with Acute Myeloid Leukemia (AML). DNA methylation is an epigenetic modification with key roles in the specification of cellular identity, and, when deregulated, in cancer. DNA methylation is a reversible process and, only recently, it was discovered that TET (Ten-eleven Translocation) proteins mediate DNA demethylation. Mammals have three TET homologues (TET1-3). While TET1 and TET3 share an N-terminal DNA-binding domain (CXXC motif), TET2 has lost its CXXC motif during evolution. Therefore, it is not understood how TET2 binds DNA. Due to the lack of a known DNA-binding domain in TET2, I hypothesize that TET2 may require to interact with proteins to be recruited to DNA, which is essential for its function. Hence, the main goal of my proposal is to understand how TET2 binds to DNA and to identify interacting proteins that participate in this recruitment. I also aim to unveil whether cancer-associated mutations affect TET2 recruitment. To achieve these goals, I will perform a structural-functional analysis of TET2. First, I will perform Chromatin Immunoprecipitation (ChIP) followed by whole genome sequencing of wildtype and truncated TET2. Thus, I will identify the region(s) required for the binding of TET2 to DNA. Next, I will seek proteins that interact with TET2 through the previously identified region by Mass Spectrometry and I will test their involvement in TET2 recruitment to DNA. Furthermore, I will perform similar experiments to inspect the impact of TET2 missense mutations found in human cancer on TET2 recruitment to DNA. Altogether, this project will yield a better understanding of how TET2 is recruited to DNA. The results obtained will significantly impact the epigenetic field and allow for a better understanding of the mechanisms by which TET2 exerts its function in normal cells and how TET2 mutations contribute to cancer.

 Publications

year authors and title journal last update
List of publications.
2019 Kasper D. Rasmussen, Ivan Berest, Sandra Keβler, Koutarou Nishimura, Lucía Simón-Carrasco, George S. Vassiliou, Marianne T. Pedersen, Jesper Christensen, Judith B. Zaugg, Kristian Helin
TET2 binding to enhancers facilitates transcription factor recruitment in hematopoietic cells
published pages: 564-575, ISSN: 1088-9051, DOI: 10.1101/gr.239277.118
Genome Research 29/4 2020-02-05

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TET2REC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TET2REC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

deCrYPtion (2019)

Decrypting Mycobacterium cytochrome P450 (CYP) physiological functions by testing hypotheses emitted form large-scale comparative genomics analysis

Read More  

SCAPA (2019)

Functional analysis of Alternative Polyadenylation during neuronal differentiation at single cell resolution

Read More  

VDGSEGUR (2019)

Gender Violence and Security in the Interoceanic Industrial Corridor of the Isthmus of Tehuantepec: A Critical Examination of Policies and Practices

Read More