Opendata, web and dolomites


Mapping Reaction Pathways Using Transient Ultrafast Spectroscopies: Kinetic and Mechanistic Investigation of Photoredox Catalysed Reactions

Total Cost €


EC-Contrib. €






 MARCUS project word cloud

Explore the words cloud of the MARCUS project. It provides you a very rough idea of what is the project "MARCUS" about.

reveal    details    synthetic    sustainable    introducing    chemistry    withdrawing    unprecedented    transfers    photoinduced    nano    catalytic    organocatalyzed    vision    dicyanobenzene    radical    sought    absorption    conjugated    reactions    varied    ultrafast    diphenyl    materials    full    transient    catalysis    kinetics    effect    back    organic    sub    vibrational    efficiency    donating    mechanistic    polarity    modifications    mechanisms    atom    electronic    scarce    photoredox    reactive    transforming    intermediates    catalyst    timescales    understand    structures    theory    micro    marcus    connections    solvent    anthraquinone    outcomes    electron    photocatalyst    kinetic    reaction    cycle    structure    transfer    rates    ring    single    regeneration    molecular    picosecond    groups    spectroscopies    oxidation    photoexcitation    polymerization    observe    photocatalytic    catalyzed    alter    potentials    inform    dihydrophenazine    continuous    termination    photocatalysts   

Project "MARCUS" data sheet

The following table provides information about the project.


Organization address
postcode: BS8 1QU

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-05-01   to  2020-05-27


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF BRISTOL UK (BRISTOL) coordinator 183˙454.00


 Project objective

Photoredox catalysis is transforming synthetic chemistry methodologies but mechanistic studies remain scarce. The proposed research will reveal kinetic and mechanistic details of photoredox catalyzed polymerization reactions using ultrafast transient electronic and vibrational absorption spectroscopies. The focus will be on organocatalyzed atom transfer radical polymerization mechanisms, using organic photocatalysts based on diphenyl dihydrophenazine and other conjugated ring structures. The vision is to observe the full catalytic cycle from ultrafast (sub-picosecond) photoexcitation of the catalyst to radical termination and catalyst regeneration on nano and micro second timescales in single continuous measurements. The objectives will be to understand the effect of catalyst structure and solvent properties on the rates of key steps in the photocatalytic cycle such as photoinduced and back electron transfers. Mechanistic connections will be sought between the reaction kinetics and the efficiency of the photocatalyst. The photocatalyst structure will be varied, for example by introducing electron withdrawing or electron donating groups, and these modifications together with changes to the solvent polarity will alter the oxidation/reduction potentials of the photocatalyst. Understanding of the electron transfer steps will be sought through application of Marcus theory. These unprecedented studies will identify the reactive intermediates involved in the electron transfer driven radical chemistry and will reveal the molecular properties most important for controlling the photocatalytic efficiency. Further organic photocatalytic reactions, such as those involving dicyanobenzene or anthraquinone photocatalysts will be investigated. The outcomes will inform future design of sustainable organic photocatalysts for numerous synthetic and materials applications.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MARCUS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MARCUS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MathematicsAnalogies (2019)

Mathematics Analogies

Read More  

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More  

PNAIC (2018)

Positive and Negative Asymmetry in Intergroup Contact: Its Impact on Linguistic Forms of Communication and Physiological Responses

Read More