Opendata, web and dolomites

ART-BONE SIGNED

Manufacturing of Artificial Bone for Repair and Regeneration of Large Osseous Defects

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ART-BONE project word cloud

Explore the words cloud of the ART-BONE project. It provides you a very rough idea of what is the project "ART-BONE" about.

elementary    structural    biomimetic    osseointegration    combined    overcome    possesses    resonance    osteoconduction    scrutinize    guarantee    limitations    capability    experimental    autografts    cryogenic    composition    characterization    active    bone    molecules    bioorganic    latest    manufacturing    standard    implantation    optimal    pairs    experiment    spectroscopy    biocompatibility    gold    hydroxyapatite    materials    repair    strategy    precisely    microscopy    solid    reconstruct    architecture    finalized    osteointegration    magnetic    suboptimal    adhesion    mimics    biomimicry    collagen    crystals    tissues    physical    clinical    chemical    scanning    implant    biomaterial    tissue    transmission    water    nanotechnology    appealing    electron    inflammation    inspired    accordingly    natural    resides    respect    3d    inflammatory    ion    parallel    adjusted    novelty    differ    synthetic    helium    surrounding    blocks    alternative    techniques    nuclear    capacity    possess    prevent    building    native    fibrils    insure    theory    biomaterials    biomineralization    regeneration    printing    good    innovative    fact   

Project "ART-BONE" data sheet

The following table provides information about the project.

Coordinator
THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN 

Organization address
address: College Green
city: DUBLIN
postcode: 2
website: www.tcd.ie

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Ireland [IE]
 Total cost 175˙866 €
 EC max contribution 175˙866 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-CAR
 Starting year 2018
 Duration (year-month-day) from 2018-09-03   to  2020-09-02

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN IE (DUBLIN) coordinator 175˙866.00

Map

 Project objective

Implant biomaterials currently used for bone repair and regeneration often cause inflammation responses, and possess suboptimal osseointegration capability and osteoconduction ability. These significant clinical problems are due to their chemical, structural and physical properties which differ greatly with respect to a natural bone tissue. ART-BONE aims to overcome these limitations via an innovative, nanotechnology strategy for the manufacturing of a new type of synthetic biomaterial that precisely mimics bone tissue features. This strategy pairs 3D printing technology with a bottom-up process in which the elementary building blocks of bone (hydroxyapatite crystals, collagen fibrils, water molecules, active bioorganic molecules) are combined to reconstruct the overall architecture and chemical composition of a natural bone tissue. In parallel, numerous materials characterization techniques (solid-state nuclear magnetic resonance spectroscopy, scanning helium ion microscopy, cryogenic transmission electron microscopy, etc.) will be applied to scrutinize the finalized synthetic biomaterial; and the experiment conditions will be adjusted accordingly to ensure its biomimicry with native tissues. The novelty of this strategy resides in the fact that the experimental approach is inspired by the latest concepts in bone biomineralization, and enables the design of highly biomimetic, synthetic biomaterials in terms of chemical, structural and physical properties. This strategy must not only guarantee the biocompatibility of the finalized synthetic biomaterial and prevent inflammatory responses, but also insure a good adhesion to the surrounding bone tissue following implantation. Such highly biomimetic, synthetic biomaterial possesses, in theory, optimal osteointegration capacity and osteoconduction ability, and will offer an appealing alternative to the clinical “gold standard” autografts in the future.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ART-BONE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ART-BONE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More  

MacMeninges (2019)

Control of Central Nervous Sytem inflammation by meningeal macrophages, and its impairment upon aging

Read More  

MNSWLGM (2019)

An optofluidic platform based on liquid-gradient refractive index microlens for the isolation and quantification of extracellular vesicles

Read More