Opendata, web and dolomites

SiPoMorph SIGNED

Genetic control and molecular mechanisms of cell wall modifications during sieve pore morphogenesis in the phloem of the plant vascular system

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SiPoMorph project word cloud

Explore the words cloud of the SiPoMorph project. It provides you a very rough idea of what is the project "SiPoMorph" about.

occlusion    equally    sieve    larger    phloem    mutants    dominant    proteins    sugars    leaves    point    describe    lab    hormones    pores    largely    mechanisms    tubers    passed    knock    roots    inducible    critical    powerful    fundamental    plate    interference    morphogenesis    tissues    form    vasculature    lacking    seeds    damage    mediated    livestock    connect    cell    cells    host    functionally    mostly    genetic    tubes    crispr    additionally    ablation    transgenic    stresses    developmental    organs    lines    adaptations    science    perforation    efficient    stress    differentiation    encoding    morphological    genes    supra    variances    pore    continuous    nearly    degradation    poorly    sink    molecular    source    flow    hence    framework    conducting    conductive    laser    tools    transport    cellular    candidate    individual    rnas    units    sap    calories    unknown    abiotic    plates    players    agriculture    modern    closed    callose    adaptive    biological    modulated    humans    mechanistic    localized    infections    fruits    xylem    deposition    surprisingly    plant   

Project "SiPoMorph" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-07-01   to  2021-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 183˙454.00

Map

 Project objective

The plant vasculature comprises the xylem and phloem. The phloem’s conductive cells, the sieve elements, transport sugars produced in leaves to sink organs, such as roots, tubers, fruits and seeds. They also transport hormones and RNAs throughout the plant, enabling its adaptive and continuous development. Individual sieve elements connect through callose-rich sieve plates to form sieve tubes, the larger supra-cellular conducting units. Perforation of the sieve plate with sieve pores is critical to efficient sap flow and can be modulated by callose-mediated occlusion. Indeed, sieve pores are rapidly closed in response to tissues damage, abiotic stresses and infections. Cellular differentiation and adaptation of sieve elements, particularly sieve pore morphogenesis, are surprisingly poorly understood and, lacking powerful cell-biological tools, has largely been neglected. This project sets out to describe a molecular and genetic framework for sieve plate formation. To this end, mutants and transgenic lines already generated in the host lab will be characterized. Additionally, candidate genes, encoding mostly for unknown proteins will be localized in sieve elements. These genes will be functionally characterized using several state-of-the-art methods and specifically-tailored molecular tools, such as inducible CRISPR knock-out, laser ablation and dominant cell-specific genetic interference. This will identify novel molecular players during callose deposition and degradation at sieve pores and advance our mechanistic understanding of sieve plate formation and possible adaptive mechanisms of stress response. Morphological variances and developmental adaptations of sieve pores are important for phloem source-to-sink transport and nearly all calories consumed by humans and livestock have at some point passed through sieve pores. Hence, understanding their morphogenesis at the molecular level is equally relevant for fundamental plant science as for modern agriculture.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SIPOMORPH" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SIPOMORPH" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

DGLC (2019)

Domain-general language control: Evidence from the switching paradigm

Read More  

PopulistFP (2019)

The Populist Politics of Foreign Policy

Read More  

BIOplasma (2019)

Use flexible Tube Micro Plasma (FµTP) for Lipidomics

Read More