Opendata, web and dolomites


Black phosphorous quantum dots as fluorescent nanosensing platforms for detecting unauthorised genetically modified material

Total Cost €


EC-Contrib. €






 UGMNanoSens project word cloud

Explore the words cloud of the UGMNanoSens project. It provides you a very rough idea of what is the project "UGMNanoSens" about.

laboratories    structure    acid    family    fascinating    biomolecule    ugm    bp    genetically    sense    dna    materials    exhibiting    virtually    monitoring    countries    sensing    signal    black    specialised    quenchers    ugmnanosens    prohibiting    operation    arriving    sensors    faster    nanomaterial    market    bpqds    triggered    owing    material    polymerase    technologies    nanomaterials    unauthorised    rapid    modified    mostly    ratio    noise    reinforce    interactions    imports    zero    fluorescent    placed    optical    enforcement    explored    authorised    fluorophores    simpler    electronic    efficient    2d    organisms    functional    union    interesting    sensitivity    alarms    detection    emergent    shown    dots    molecular    analytical    nucleic    tolerance    monolayer    phosphorus    policy    time    graphene    discovery    unapproved    law    quantum    conventional    sought    enforcing    limited    traces    encouraged    reaction    resurgence    nanoplatforms    chain    tunable    ease   

Project "UGMNanoSens" data sheet

The following table provides information about the project.


Organization address
address: TECHNICKA 5
city: PRAHA
postcode: 166 28

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Czech Republic [CZ]
 Total cost 142˙720 €
 EC max contribution 142˙720 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-05-01   to  2020-04-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

The discovery of traces of unapproved genetically modified material in imports arriving to the European Union (EU) has set the alarms on for the European authorities, leading them to reinforce their monitoring procedures. The EU has a ‘zero tolerance policy’ for virtually all unauthorised genetically modified organisms (UGM), prohibiting them to be placed on the EU market even if they have been authorised in third countries. UGM monitoring is carried out in a limited number of enforcement laboratories through highly specialised technologies, mostly based on the real-time polymerase chain reaction. The development of faster, simpler and more cost-efficient analytical systems for UGM testing is greatly encouraged by law-enforcing authorities. The increasing number of functional nanomaterials with interesting properties and exhibiting specific biomolecule interactions, e.g. DNA-graphene, has brought a wide range of opportunities to the field of DNA detection. The interest in nanomaterial-based fluorescent sensors for nucleic acid detection has been growing due to their ease of operation and high sensitivity. In this sense, the use of nanomaterials as fluorophores or quenchers has been especially sought in recent years as they have tunable optical properties and can improve the signal-to-noise ratio as compared to conventional molecular systems. Monolayer black phosphorus (BP), being an important member of the 2D-materials family, has triggered a recent resurgence of interest owing to its unique structure as well as fascinating optical and electronic properties and, most recently, BP Quantum Dots (BPQDs) have shown promising potential in a wide range of applications, some of them yet to be explored. This proposal is aimed at evaluating the use of this emergent material (BPQDs) as fluorescent-based nanoplatforms to make up a rapid and simple DNA-sensing system for monitoring unauthorised genetically modified material (“UGMNanoSens”).


year authors and title journal last update
List of publications.
2019 Carmen Lorena Manzanares-Palenzuela, Sona Hermanova, Zdenek Sofer, Martin Pumera
Proteinase-sculptured 3D-printed graphene/polylactic acid electrodes as potential biosensing platforms: towards enzymatic modeling of 3D-printed structures
published pages: 12124-12131, ISSN: 2040-3364, DOI: 10.1039/c9nr02754h
Nanoscale 11/25 2020-04-01
2019 C. Lorena Manzanares Palenzuela, Amir Masoud Pourrahimi, Zdeněk Sofer, Martin Pumera
Mix-and-Read No-Wash Fluorescence DNA Sensing System Using Graphene Oxide: Analytical Performance of Fresh Versus Aged Dispersions
published pages: 1611-1616, ISSN: 2470-1343, DOI: 10.1021/acsomega.8b02885
ACS Omega 4/1 2020-01-29
2019 C. Lorena Manzanares-Palenzuela, Amir M. Pourrahimi, J. Gonzalez-Julian, Zdenek Sofer, Martin Pykal, Michal Otyepka, Martin Pumera
Interaction of single- and double-stranded DNA with multilayer MXene by fluorescence spectroscopy and molecular dynamics simulations
published pages: 10010-10017, ISSN: 2041-6520, DOI: 10.1039/c9sc03049b
Chemical Science 10/43 2020-01-29

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "UGMNANOSENS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "UGMNANOSENS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

PNAIC (2018)

Positive and Negative Asymmetry in Intergroup Contact: Its Impact on Linguistic Forms of Communication and Physiological Responses

Read More  

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More  

RegARcis (2020)

Role of the SWI/SNF complex in the Androgen Receptor cistrome regulation

Read More