Opendata, web and dolomites


Contentotopic mapping: the topographical organization of object knowledge in the brain

Total Cost €


EC-Contrib. €






Project "ContentMAP" data sheet

The following table provides information about the project.


Organization address
postcode: 3001 451

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Portugal [PT]
 Total cost 1˙816˙004 €
 EC max contribution 1˙816˙004 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-02-01   to  2024-01-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSIDADE DE COIMBRA PT (COIMBRA) coordinator 1˙816˙004.00


 Project objective

Our ability to recognize an object amongst many others is one of the most important features of the human mind. However, object recognition requires tremendous computational effort, as we need to solve a complex and recursive environment with ease and proficiency. This challenging feat is dependent on the implementation of an effective organization of knowledge in the brain. In ContentMAP I will put forth a novel understanding of how object knowledge is organized in the brain, by proposing that this knowledge is topographically laid out in the cortical surface according to object-related dimensions that code for different types of representational content – I will call this contentotopic mapping. To study this fine-grain topography, I will use a combination of fMRI, behavioral, and neuromodulation approaches. I will first obtain patterns of neural and cognitive similarity between objects, and from these extract object-related dimensions using a dimensionality reduction technique. I will then parametrically manipulate these dimensions with an innovative use of a visual field mapping technique, and test how functional selectivity changes across the cortical surface according to an object’s score on a target dimension. Moreover, I will test the tuning function of these contentotopic maps. Finally, to mirror the complexity of implementing a high-dimensional manifold onto a 2D cortical sheet, I will aggregate the topographies for the different dimensions into a composite map, and develop an encoding model to predict neural signatures for each object. To sum up, ContentMAP will have a dramatic impact in the cognitive sciences by describing how the stuff of concepts is represented in the brain, and providing a complete description of how fine-grain representations and functional selectivity within high-level complex processes are topographically implemented.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CONTENTMAP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CONTENTMAP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

ModGravTrial (2019)

Modified Gravity on Trial

Read More  

ImmUne (2019)

Towards identification of the unifying principles of vertebrate adaptive immunity

Read More  

UEMHP (2019)

Unravelling Earth’s magnetic history and processes

Read More