Opendata, web and dolomites

OTmeetsDFT SIGNED

Multi-marginal Optimal Transport and Density Functional Theory: a mathematical setting for physical ideas

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 OTmeetsDFT project word cloud

Explore the words cloud of the OTmeetsDFT project. It provides you a very rough idea of what is the project "OTmeetsDFT" about.

numerical    prominent    material    mathematics    co    optimal    theory    giorgi    ouml    capture    gori    simpler    kohn    turn    researcher    framework    lieb    day    creates    solid    transition    combining    marginal    treat    mathematical    host    predicting    metals    electrons    linking    limit    authors    basic    physicists    functions    principles    correlation    dft    rigorous    finitely    expertise    sce    biophysics    coulomb    calculations    hohenberg    sciences    solved    sham    accurately    amsterdam    group    infinite    instance    variables    electron    electronic    wave    physical    marginals    chemistry    physics    ks    correlated    schr    theorems    few    arising    computation    site    function    interacting    breakthrough    section    theoretical    toward    realistic    hosting    relies    universiteit    equation    vrije    fellow    chemists    coupling    quantities    exact    functional    transport    strength    plays    determined    mathematician    deal    dinger    structure    combinations    ideas    uses    formalism    communities    levy    density    first   

Project "OTmeetsDFT" data sheet

The following table provides information about the project.

Coordinator
STICHTING VU 

Organization address
address: DE BOELELAAN 1105
city: AMSTERDAM
postcode: 1081 HV
website: www.vu.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 177˙598 €
 EC max contribution 177˙598 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-05-01   to  2021-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    STICHTING VU NL (AMSTERDAM) coordinator 177˙598.00

Map

 Project objective

Accurately predicting electronic structure from first principles is crucial for many research areas such as chemistry, solid-state physics, biophysics and material sciences. In principle, the electronic structure is determined by the Schrödinger equation, which can only be solved in practice for few electrons. Kohn-Sham (KS) Density functional theory (DFT) has been a real breakthrough for electronic structure calculations. KS DFT uses the one-electron density and a non-interacting wave function as basic variables, much simpler quantities than many-electron wave-functions, allowing to treat realistic large systems.

However, present-day KS DFT is not yet able to accurately capture the physics of systems in which electronic correlation plays a prominent role (e.g. transition metals). In recent years, the hosting group has developed a formalism to deal with density functional theory for strongly correlated systems (SCE), based on the exact DFT limit of infinite coupling strength, linking SCE DFT to Optimal Transport Theory with Coulomb costs.

This project creates a mathematical framework toward a rigorous SCE DFT theory, proposed by Gori-Giorgi and co-authors, combining the fellow's expertise in optimal transport and the host researcher experience in SCE DFT. This relies to (i) the study of a new instance of optimal transport problem with finitely many marginals and Coulomb cost; (ii) the computation of higher-order terms of the Levy-Lieb (Hohenberg-Kohn) functional around the infinite coupling strength limit.

The problems arising in multi-marginal optimal transport and SCE DFT requires novel combinations of ideas from three research communities: chemists, physicists and mathematics. Our goal is to turn numerical results and physical ideas developed by P. Gori-Giorgi's group (host researcher) into theorems.

The researcher is a mathematician and the site of research is the Theoretical Chemistry section of the Vrije Universiteit Amsterdam.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "OTMEETSDFT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "OTMEETSDFT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

PNAIC (2018)

Positive and Negative Asymmetry in Intergroup Contact: Its Impact on Linguistic Forms of Communication and Physiological Responses

Read More  

ASIQS (2019)

Antiferromagnetic spintronics investigated by quantum sensing techniques

Read More  

RegARcis (2020)

Role of the SWI/SNF complex in the Androgen Receptor cistrome regulation

Read More