Opendata, web and dolomites

EpiBarrier SIGNED

Control of the blood-brain barrier integrity during seizures via the ATP-gated P2X7 receptor

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 EpiBarrier project word cloud

Explore the words cloud of the EpiBarrier project. It provides you a very rough idea of what is the project "EpiBarrier" about.

downstream    cells    million    treatment    leakage    models    earliest    borne    atp    beta    impacts    signaling    integrity    entry    pathophysiological    barrier    techniques    status    imaging    toxic    bbb    endothelial    responsiveness    bloodstream    network    compounds    drugs    protects    disruption    functional    players    epilepsy    transgenic    ing    hemorrhage    inflammatory    50    prevent    consequently    newly    intracerebral    genes    strategies    anti    pertinent    decade    forming    pathology    function    types    emphasis    progression    sequencing    paid    permeability    dependent    gated    rna    edge    disorder    vasculature    p2x7    cellular    opening    antagonism    chronic    continuous    expressed    interleukin    seizure    maintaining    damaging    cell    molecules    epilepticus    inflammation    dysfunction    epileptogenic    epileptic    purinergic    gained    neurological    disturbances    date    homeostasis    cutting    people    regulated    cerebral    blood    immune    play       brain    animal    cns    receptor    seizures    effect    epileptogenesis    disease    separating   

Project "EpiBarrier" data sheet

The following table provides information about the project.

Coordinator
ROYAL COLLEGE OF SURGEONS IN IRELAND 

Organization address
address: Saint Stephen's Green 123
city: DUBLIN
postcode: 2
website: www.rcsi.ie

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Ireland [IE]
 Total cost 175˙866 €
 EC max contribution 175˙866 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-04-01   to  2020-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    ROYAL COLLEGE OF SURGEONS IN IRELAND IE (DUBLIN) coordinator 175˙866.00

Map

 Project objective

Epilepsy is the most common chronic neurological disorder, affecting ~50 million people. Major challenges in epilepsy include non-responsiveness to treatment and no effect on disease progression provided by anti-epileptic drugs. Over the past decade, particular attention has been paid to dysfunction of cerebral vasculature and inflammatory processes as important players in epileptogenic processes, with a specific emphasis on failure of the blood–brain barrier (BBB). The BBB is a complex cellular network forming a continuous cellular barrier separating the CNS from the bloodstream. A functional BBB is crucial in maintaining brain homeostasis and to prevent the entry of toxic compounds and immune cells into the CNS. During pathology, however, the permeability of the BBB may increase with the resulting entry into the CNS of blood-borne molecules and cells. Leakage of the BBB is one of the earliest characteristic pathophysiological disturbances following status epilepticus and may play an important role in the development of epilepsy. Consequently, drugs targeting BBB function may represent novel treatment strategies in epilepsy. The purinergic ATP-gated P2X7 receptor has gained much attention recently as novel target in the treatment of epilepsy. Expressed on all cell types in the CNS including endothelial cells, P2X7 has been associated with numerous damaging processes pertinent to epileptogenesis, such as inflammation and opening of the BBB. ATP and the P2X7 downstream target Interleukin-1β contribute to the disruption of the BBB and P2X7 antagonism protects against BBB disruption during intracerebral hemorrhage. To date, however, we do not know whether seizure-induced changes of the BBB are dependent on P2X7 signaling, and whether this process can be targeted. By using newly developed transgenic animal models, RNA sequencing and cutting edge imaging techniques we will determine how P2X7 impacts on BBB integrity during seizures and what genes are regulated by P2X7.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "EPIBARRIER" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "EPIBARRIER" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

NarrowbandSSL (2019)

Development of Narrow Band Blue and Red Emitting Macromolecules for Solution-Processed Solid State Lighting Devices

Read More