Opendata, web and dolomites

EpiBarrier SIGNED

Control of the blood-brain barrier integrity during seizures via the ATP-gated P2X7 receptor

Total Cost €


EC-Contrib. €






 EpiBarrier project word cloud

Explore the words cloud of the EpiBarrier project. It provides you a very rough idea of what is the project "EpiBarrier" about.

disease    decade    intracerebral    cell    50    strategies    edge    seizure    people    sequencing    functional    epileptogenic    interleukin    permeability    atp    cerebral    opening    blood    rna    inflammation    separating    epileptic    genes    treatment    entry    gated    anti    toxic    immune    maintaining    cells    p2x7    function    date    antagonism    responsiveness    effect    dysfunction    barrier    types    cellular    leakage    borne    progression    disorder    inflammatory    players    hemorrhage    epileptogenesis    bbb    techniques    forming    earliest    compounds    imaging    integrity    emphasis    beta    network    neurological    damaging    regulated    bloodstream    downstream    gained    pathophysiological    models    disruption    consequently    signaling    transgenic    brain    animal    play    million    newly    molecules    expressed    protects    prevent    purinergic    impacts    drugs    continuous    paid    disturbances    dependent    chronic    endothelial    status    seizures    epilepsy    cutting    receptor    vasculature    pertinent    pathology    ing       epilepticus    homeostasis    cns   

Project "EpiBarrier" data sheet

The following table provides information about the project.


Organization address
address: Saint Stephen's Green 123
city: DUBLIN
postcode: 2

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Ireland [IE]
 Total cost 175˙866 €
 EC max contribution 175˙866 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-04-01   to  2020-03-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Epilepsy is the most common chronic neurological disorder, affecting ~50 million people. Major challenges in epilepsy include non-responsiveness to treatment and no effect on disease progression provided by anti-epileptic drugs. Over the past decade, particular attention has been paid to dysfunction of cerebral vasculature and inflammatory processes as important players in epileptogenic processes, with a specific emphasis on failure of the blood–brain barrier (BBB). The BBB is a complex cellular network forming a continuous cellular barrier separating the CNS from the bloodstream. A functional BBB is crucial in maintaining brain homeostasis and to prevent the entry of toxic compounds and immune cells into the CNS. During pathology, however, the permeability of the BBB may increase with the resulting entry into the CNS of blood-borne molecules and cells. Leakage of the BBB is one of the earliest characteristic pathophysiological disturbances following status epilepticus and may play an important role in the development of epilepsy. Consequently, drugs targeting BBB function may represent novel treatment strategies in epilepsy. The purinergic ATP-gated P2X7 receptor has gained much attention recently as novel target in the treatment of epilepsy. Expressed on all cell types in the CNS including endothelial cells, P2X7 has been associated with numerous damaging processes pertinent to epileptogenesis, such as inflammation and opening of the BBB. ATP and the P2X7 downstream target Interleukin-1β contribute to the disruption of the BBB and P2X7 antagonism protects against BBB disruption during intracerebral hemorrhage. To date, however, we do not know whether seizure-induced changes of the BBB are dependent on P2X7 signaling, and whether this process can be targeted. By using newly developed transgenic animal models, RNA sequencing and cutting edge imaging techniques we will determine how P2X7 impacts on BBB integrity during seizures and what genes are regulated by P2X7.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "EPIBARRIER" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "EPIBARRIER" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MNSWLGM (2019)

An optofluidic platform based on liquid-gradient refractive index microlens for the isolation and quantification of extracellular vesicles

Read More  

TFZN (2019)

Understanding the mechanisms that govern organ morphostasis and repair

Read More  

secretPOL (2019)

The PIDE and Portuguese Society under the Salazar Dictatorship 1945-1974: Fear, Self-Policing, Accommodation.

Read More