Opendata, web and dolomites

PathAutoBIO SIGNED

Uncovering the pathway of DNA-induced autophagy and its biological functions in viral central nervous system infection

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PathAutoBIO project word cloud

Explore the words cloud of the PathAutoBIO project. It provides you a very rough idea of what is the project "PathAutoBIO" about.

spectrum    functions    autoimmune    induction    explore    varied    advantage    cas9    combined    dna    function    genome    recycling    themselves    central    viral    difficulties    poses    showed    stem    hosts    likewise    adaptor    protective    nervous    societies    nucleic    plays    mechanisms    unknown    deep    collaborators    molecule    pathautobio    insights    vivo    imagestream    fighting    defense    infection    human    international    tools    autophagy    clearance    immune    flow    pathogen    cytosolic    acids    combine    integrate    immunity    subsequent    coordinate    vitro    background    cross    sensing    cells    metabolic    biology    crispr    host    harmful    leads    models    regulations    elusive    cell    sting    regulating    infect    broad    site    pivotal    mediated    activation    inflammation    persist    regulation    global    brain    editing    balance    cytometry    threats    cutting    infectious    roles    degradative    pathogens    expertise    diseases    therapies    edge    infections    innovative    decipher    presenting    links    cancers    neurodegeneration    lab    strategies   

Project "PathAutoBIO" data sheet

The following table provides information about the project.

Coordinator
AARHUS UNIVERSITET 

Organization address
address: NORDRE RINGGADE 1
city: AARHUS C
postcode: 8000
website: www.au.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 200˙194 €
 EC max contribution 200˙194 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-05-01   to  2020-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    AARHUS UNIVERSITET DK (AARHUS C) coordinator 200˙194.00

Map

 Project objective

Pathogens establish a range of strategies to efficiently infect and persist in their hosts. These mechanisms are as varied as pathogens themselves, which poses many difficulties for fighting infections. A deep understanding of host defense mechanisms is thus crucial for developing innovative therapies. Sensing of pathogen-derived nucleic acids is pivotal for induction of host defense. The adaptor molecule STING plays a central role in this defense and coordinate activation of immune responses. Recent studies showed that cytosolic DNA sensing and subsequent STING activation also leads to induction of autophagy, a degradative pathway involved in metabolic recycling and regulation of infections and immunity. Both STING and autophagy are involved in a range of diseases e.g. infectious and autoimmune diseases, neurodegeneration and cancers. However, the links between STING and autophagy and their regulation of the balance between protective responses and harmful inflammation is elusive. Likewise, the roles of STING-mediated autophagy during viral infections is unknown. Using cutting-edge tools e.g. ImageStream X flow cytometry and genome-editing of human stem cells-derived brain cells using CRISPR/Cas9, PathAutoBIO will decipher the pathway of this novel STING function. We will then combine in vitro and in vivo models of central nervous system viral infection to explore STING-mediated autophagy functions at this unique site, where autophagy and STING are important for viral clearance. We will build upon the expertise of the host lab in DNA sensing, take advantage of unique tools developed for the project, and integrate leading international collaborators. Combined with my strong background in infection cell biology, our work will provide insights on the cross-regulations between autophagy and immunity. This will lead to a broader understanding of mechanisms regulating diseases presenting global threats for societies and will help the design of broad-spectrum therapies.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PATHAUTOBIO" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PATHAUTOBIO" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

CYBERSECURITY (2018)

Cyber Security Behaviours

Read More