Opendata, web and dolomites

FERROENERGY SIGNED

Integrated ferroelectric oxides for energy conversion devices

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 FERROENERGY project word cloud

Explore the words cloud of the FERROENERGY project. It provides you a very rough idea of what is the project "FERROENERGY" about.

impeding    prototypical    conversion    graphene    semiconductor    functionalities    flexible    rapid    phenomena    technological    freestanding    oxide    diversity    demonstrated    despite    once    clamping    difficulty    alleviate    awaited    technologies    spain    microscopic    superior    thin    sustainable    experimental    lack    films    integrating    microelectronic    layers    ideal    accelerate    generation    industry    family    alternative    extended    promise    completely    vast    countless    rely    desired    electronic    oxides    free    united    convenience    governing    pervasive    optimize    displaying    continued    intrinsic    progression    single    substrates    performance    fabrication    action    obstacles    physical    integration    ferroelectric    efficient    seemed    atomic    thereby    complete    multidisciplinary    paving    exploits    manipulation    explore    ago    enabled    first    stage    progress    augment    materials    substrate    energy    impossible    inspired    route    macroscopically   

Project "FERROENERGY" data sheet

The following table provides information about the project.

Coordinator
FUNDACIO INSTITUT CATALA DE NANOCIENCIA I NANOTECNOLOGIA 

Organization address
address: CAMPUS DE LA UAB EDIFICI Q ICN2
city: BELLATERRA (BARCELONA)
postcode: 8193
website: www.icn.cat

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 257˙191 €
 EC max contribution 257˙191 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-GF
 Starting year 2019
 Duration (year-month-day) from 2019-02-08   to  2022-02-07

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FUNDACIO INSTITUT CATALA DE NANOCIENCIA I NANOTECNOLOGIA ES (BELLATERRA (BARCELONA)) coordinator 257˙191.00
2    THE REGENTS OF THE UNIVERSITY OF CALIFORNIA US (OAKLAND CA) partner 0.00

Map

 Project objective

The rapid development of the semiconductor-based technology has enabled today’s functionalities and convenience that seemed impossible just a generation ago. Today, we rely upon numerous electronic devices that are pervasive around us to augment, accelerate, and alleviate countless tasks. In order to maintain the current (and desired) technological progression into the future, and to make this progress sustainable for the next generation, the performance of these devices must be improved in a more energy-efficient way. Complex oxides – a family of materials displaying a vast diversity of physical properties – are a promising alternative for creating the superior technologies that could ensure this extended progress. Despite their promise, the two main obstacles currently impeding their implementation are 1) continued lack of a complete understanding of the microscopic phenomena governing the properties and 2) the difficulty in integrating such materials with existing processes in the semiconductor industry. This Action exploits a novel fabrication process, inspired by the manipulation of single atomic layers such as graphene, but applied in a completely new way: to produce macroscopically large freestanding oxide thin films. Such films present a system free of substrate clamping and ideal to explore and optimize the intrinsic functionalities of these materials. In the first stage of the action, freestanding ferroelectric oxide films will be studied, thereby paving the way for implementation of the second stage in which these films will be integrated with semiconductor and flexible substrates for the development of energy conversion microelectronic devices. Once the objectives of this Action are achieved, a long awaited route to improve the current semiconductor technology via prototypical integration of complex oxides will be demonstrated. This multidisciplinary experimental action will be developed at two top level research institutions in United States and Spain.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FERROENERGY" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FERROENERGY" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Widow Spider Mating (2020)

Immature mating as a novel tactic of an invasive widow spider

Read More  

TARGET SLEEP (2020)

Boosting motor learning through sleep and targeted memory reactivation in ageing and Parkinson’s disease

Read More  

LieLowerBounds (2019)

Lower bounds for partial differential operators on compact Lie groups

Read More