Opendata, web and dolomites

IN-3D-CAN SIGNED

Instrumented 3D-Printed Miniature Muscles for Cardiotoxicity Screens of Cancer Therapies

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 IN-3D-CAN project word cloud

Explore the words cloud of the IN-3D-CAN project. It provides you a very rough idea of what is the project "IN-3D-CAN" about.

chemotherapeutics    printed    engineered    death    immunotherapy    leverage    printing    found    2d    me    therapies    biomedical    ri    chips    insights    platform    native    leader    cardiac    3d    tracking    msca    complications    am    thin    treatments    serve    drugs    instrumented    harvard    patients    paper    group    reintegrate    postdoc    techniques    microphysiological    tissue    throughput    films    strain    cardiotoxicity    drug    abroad    organs    recurrent    assistant    toxicity    antibody    reported    nature    dtu    career    human    materials    author    illustrated    tools    fellowship    dk    supervisor    year    host    perform    applicable    solution    sensors    screening    expand    first    methodology    entirely    fatally    independent    cancer    ef    rationale    anthracycline    chip    micro    train    thicker    recapitulate    models    professorship    vitro    muscle    outcomes    introducing    committed    significantly    organ    nanotech    uni    overarching    heart   

Project "IN-3D-CAN" data sheet

The following table provides information about the project.

Coordinator
DANMARKS TEKNISKE UNIVERSITET 

Organization address
address: ANKER ENGELUNDSVEJ 1 BYGNING 101 A
city: KGS LYNGBY
postcode: 2800
website: www.dtu.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 212˙194 €
 EC max contribution 212˙194 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-RI
 Starting year 2018
 Duration (year-month-day) from 2018-07-01   to  2020-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    DANMARKS TEKNISKE UNIVERSITET DK (KGS LYNGBY) coordinator 212˙194.00

Map

 Project objective

Rationale: Cardiotoxicity side effects are a recurrent problem for cancer therapies, fatally illustrated by the death of numerous patients treated with anthracycline chemotherapeutics. More recently, cardiac complications have also been found for antibody-based and immunotherapy treatments. Microphysiological systems and organs-on-chips may provide part of the long-term solution to these issues, by introducing improved means for studying human tissue in vitro. Main objective: The overarching objective of IN-3D-CAN is to establish instrumented in vitro 3D models of human cardiac muscle for high-throughput cardiotoxicity screening of cancer drugs and therapies. Methodology: In a recent first-author paper in Nature Materials, we reported the first entirely 3D-printed organ-on-chip with integrated sensors: A heart-on-a-chip with strain sensors for tracking engineered 2D cardiac thin films. In this proposal, I significantly expand on this 3D printing methodology, focusing on thicker 3D tissue models that better recapitulate native cardiac muscle. I will leverage the insights of the supervisor to perform toxicity screening of a range of cancer therapies. Outcomes: The proposal will establish unique tools for long-term and high-throughput studies of drug toxicity on human cardiac muscle in vitro. It will further provide unique insights into the cardiotoxicity of several cancer therapies on human cardiac muscle. Finally, the techniques for 3D printing will be widely applicable for biomedical micro-devices. Career: I am applying for an MSCA-IF-EF-RI, to reintegrate to DTU(DK), after more than 4 years abroad as Postdoc at Harvard Uni. (US) The fellowship will serve as year 1 and 2 of a 4-year assistant professorship. The host DTU Nanotech has committed to provide funding for year 3 and 4. The key career development objective is therefore to train me to become an independent group leader. Thus, In-3D-CAN will serve as immediate and long-term platform for my research.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "IN-3D-CAN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "IN-3D-CAN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CoCoNat (2019)

Coordination in constrained and natural distributed systems

Read More  

EVOMET (2019)

The rise and fall of metastatic clones under immune attack

Read More  

ASIQS (2019)

Antiferromagnetic spintronics investigated by quantum sensing techniques

Read More