Opendata, web and dolomites

IN-3D-CAN SIGNED

Instrumented 3D-Printed Miniature Muscles for Cardiotoxicity Screens of Cancer Therapies

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 IN-3D-CAN project word cloud

Explore the words cloud of the IN-3D-CAN project. It provides you a very rough idea of what is the project "IN-3D-CAN" about.

3d    organ    drug    leverage    chips    professorship    toxicity    antibody    dtu    cancer    death    printed    muscle    human    micro    first    cardiotoxicity    fatally    engineered    group    microphysiological    nature    tracking    career    fellowship    methodology    tissue    ri    assistant    organs    postdoc    native    treatments    chemotherapeutics    supervisor    perform    independent    anthracycline    platform    expand    models    thin    train    overarching    am    nanotech    ef    harvard    screening    dk    introducing    solution    recapitulate    immunotherapy    throughput    thicker    reported    vitro    printing    insights    year    2d    sensors    recurrent    patients    reintegrate    paper    techniques    abroad    leader    serve    author    msca    applicable    rationale    therapies    films    chip    entirely    cardiac    complications    tools    materials    uni    outcomes    host    heart    drugs    committed    biomedical    illustrated    me    found    significantly    instrumented    strain   

Project "IN-3D-CAN" data sheet

The following table provides information about the project.

Coordinator
DANMARKS TEKNISKE UNIVERSITET 

Organization address
address: ANKER ENGELUNDSVEJ 1 BYGNING 101 A
city: KGS LYNGBY
postcode: 2800
website: www.dtu.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 212˙194 €
 EC max contribution 212˙194 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-RI
 Starting year 2018
 Duration (year-month-day) from 2018-07-01   to  2020-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    DANMARKS TEKNISKE UNIVERSITET DK (KGS LYNGBY) coordinator 212˙194.00

Map

 Project objective

Rationale: Cardiotoxicity side effects are a recurrent problem for cancer therapies, fatally illustrated by the death of numerous patients treated with anthracycline chemotherapeutics. More recently, cardiac complications have also been found for antibody-based and immunotherapy treatments. Microphysiological systems and organs-on-chips may provide part of the long-term solution to these issues, by introducing improved means for studying human tissue in vitro. Main objective: The overarching objective of IN-3D-CAN is to establish instrumented in vitro 3D models of human cardiac muscle for high-throughput cardiotoxicity screening of cancer drugs and therapies. Methodology: In a recent first-author paper in Nature Materials, we reported the first entirely 3D-printed organ-on-chip with integrated sensors: A heart-on-a-chip with strain sensors for tracking engineered 2D cardiac thin films. In this proposal, I significantly expand on this 3D printing methodology, focusing on thicker 3D tissue models that better recapitulate native cardiac muscle. I will leverage the insights of the supervisor to perform toxicity screening of a range of cancer therapies. Outcomes: The proposal will establish unique tools for long-term and high-throughput studies of drug toxicity on human cardiac muscle in vitro. It will further provide unique insights into the cardiotoxicity of several cancer therapies on human cardiac muscle. Finally, the techniques for 3D printing will be widely applicable for biomedical micro-devices. Career: I am applying for an MSCA-IF-EF-RI, to reintegrate to DTU(DK), after more than 4 years abroad as Postdoc at Harvard Uni. (US) The fellowship will serve as year 1 and 2 of a 4-year assistant professorship. The host DTU Nanotech has committed to provide funding for year 3 and 4. The key career development objective is therefore to train me to become an independent group leader. Thus, In-3D-CAN will serve as immediate and long-term platform for my research.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "IN-3D-CAN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "IN-3D-CAN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MultiSeaSpace (2019)

Developing a unified spatial modelling strategy that accounts for interactions between species at different marine trophic levels, and different types of survey data.

Read More  

EGeoCC (2019)

Ethnic geography and civil conflict

Read More  

E-CLIPS (2019)

Effects of Cross-Linguistic Interactions on Perception of Speech

Read More