Opendata, web and dolomites

Neuronetmir

Role of miR-129-5p and Rbfox1 crosstalk in neural network homeostasis

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Neuronetmir project word cloud

Explore the words cloud of the Neuronetmir project. It provides you a very rough idea of what is the project "Neuronetmir" about.

edge    vitro    fine    cutting    genetic    networks    interdisciplinary    disease    modifying    therapies    homeostasis    proteins    drug    context    interrogate    until    cells    actions    translation    act    efficacy    crosstalk    models    binding    regulate    seizures    molecule    first    gene    ineffective    multiple    techniques    breakthrough    generate    inhibitory    electrode    showing    imaging    disorders    imbalances    pathogenesis    epilepsy    regulated    129    none    rna    organotypic    proper    rnas    animal    5p    patients    structure    alongside    mirnas    small    rbfox1    cultures    epileptogenic    mechanisms    building    brain    understand    acquire    stability    arrays    skills    synaptic    hallmark    therapeutic    molecular    clinical    network    single    micrornas    mediators    excitatory    human    vivo    potent    tune    mirna    proteomic    critical    systematic    mrna    neural    explore    noncoding    function    rbp    expertise    responsible    exert    mir    functionally    levels    rbps   

Project "Neuronetmir" data sheet

The following table provides information about the project.

Coordinator
ROYAL COLLEGE OF SURGEONS IN IRELAND 

Organization address
address: Saint Stephen's Green 123
city: DUBLIN
postcode: 2
website: www.rcsi.ie

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Ireland [IE]
 Total cost 187˙866 €
 EC max contribution 187˙866 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-07-01   to  2020-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    ROYAL COLLEGE OF SURGEONS IN IRELAND IE (DUBLIN) coordinator 187˙866.00

Map

 Project objective

Imbalances between excitatory and inhibitory neural networks are a hallmark of several brain disorders including epilepsy. Current drug therapies for epilepsy are ineffective in a third of patients and none have disease-modifying effects. It is of high priority, therefore, to understand molecular/ genetic mechanisms responsible for epilepsy development and identify novel targets. The control of mRNA stability and translation is critical for proper neural network function. Here, RNA binding proteins (RBPs) and small noncoding RNAs called microRNAs (miRNA) act together to fine-tune levels of proteins critical for synaptic structure and function. These may represent important therapeutic targets since they regulate gene networks and exert broader actions that can generate more potent effects against seizures. Until now there has been no systematic analysis of miRNA, RBP crosstalk in the context of neural network stability in epilepsy. Building on my recent breakthrough studies showing miR-129-5p/Rbfox1 crosstalk in neural network homeostasis my project will explore the following objectives: First, identify targets regulated by miR-129-5p/Rbfox1 crosstalk in vivo; Second, functionally interrogate miR-129-5p/Rbfox1 crosstalk in neural network stability in vitro and in vivo; Third, investigate miR-129-5p and Rbfox1 function in human neural networks. To achieve these objectives I will apply my existing expertise as well as acquire new skills in a range of state-of-the-art interdisciplinary and cutting-edge techniques including single molecule imaging, proteomic analyses, multiple electrode arrays, human brain organotypic cultures and pre-clinical animal models. The results will establish RBPs, alongside miRNAs, as new mediators of epileptogenic network pathogenesis. Findings will also generate new targets for pre-clinical development and evidence of efficacy in human cells for disease-modifying therapies for epilepsy and disorders of neural network homeostasis.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NEURONETMIR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NEURONETMIR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MacMeninges (2019)

Control of Central Nervous Sytem inflammation by meningeal macrophages, and its impairment upon aging

Read More  

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More  

IMPRESS (2019)

Integrated Modular Power Conversion for Renewable Energy Systems with Storage

Read More