Opendata, web and dolomites

SYNMAT SIGNED

Synthesis of Functional Multi-Component Supramolecular Systems and Materials

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SYNMAT project word cloud

Explore the words cloud of the SYNMAT project. It provides you a very rough idea of what is the project "SYNMAT" about.

stem    progress    synthetic    chirality    quartets    organoid    organic    materials    imagine    supramolecular    hence    similarities    blocks    expressed    game    procedure    chemistry    reversible    polymerization    extracellular    cell    artificial    possess    oligomers    recruit    first    chemists    complexity    nature    technologies    diameter    mimic    surfaces    erc    connected    polymer    synthesis    structures    discrete    kinetics    molecular    insights    receptors    double    matrix    takes    unexplored    final    synthesize    focusses    strategies    explore    arrive    chiral    dynamic    organization    co    asymmetrically    tools    self    synthesizing    polymers    foreseen    pitch    impressive    changer    unprecedented    special    hydrogel    introduce    building    preparing    molecules    characterization    tacticity    functional    space    block    inspiration    section    modified    selective    structure    covalent    hard    functions    arrangement    assembly    spin    fashion    network    latter    culminate    lifelike    architectures   

Project "SYNMAT" data sheet

The following table provides information about the project.

Coordinator
TECHNISCHE UNIVERSITEIT EINDHOVEN 

Organization address
address: GROENE LOPER 3
city: EINDHOVEN
postcode: 5612 AE
website: www.tue.nl/en

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 2˙499˙929 €
 EC max contribution 2˙499˙929 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-ADG
 Funding Scheme ERC-ADG
 Starting year 2018
 Duration (year-month-day) from 2018-10-01   to  2023-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITEIT EINDHOVEN NL (EINDHOVEN) coordinator 2˙499˙929.00

Map

 Project objective

This ERC proposal targets novel synthetic strategies to arrive at functional multi-component systems and materials. They possess architectures of such high complexity that it is hard to imagine access to these systems by self-assembly or self-organization only. We will explore tools required to introduce multi-step non-covalent synthesis. We have taken inspiration from Nature, but more importantly we propose to mimic the impressive progress in the field of covalent organic and polymer synthesis. Three connected approaches are defined: The first section focusses on supramolecular polymers and how their polymerization can be compared to that of traditional covalent polymerization; unprecedented similarities are foreseen. Unexplored areas like controlled co-polymerization and achieving “tacticity” in asymmetrically modified building blocks are proposed, with special attention to kinetics and structure characterization. The second section is aiming at synthesizing a multi-component hydrogel leading to a system that is able to recruit receptors in a dynamic and reversible fashion. This work is proposed to culminate in new insights for preparing an artificial extracellular matrix for stem cell to organoid growth. The latter is proposed using a double supramolecular network. The final section takes inspiration from the recent finding that chirality can control spin-selective chemistry. Novel chiral structures with control over pitch and diameter are proposed by two-step synthetic processes. In a three-step non-covalent synthetic procedure, a space-controlled arrangement of chiral quartets on surfaces is proposed using discrete block co-oligomers. Since molecules only have structures and properties, their functions can only be expressed when they are part of complex molecular systems. Hence, if chemists want to synthesize functions in lifelike materials, they have to introduce new approaches and technologies, a game changer is proposed in this ERC proposal.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SYNMAT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SYNMAT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

HBPTC (2019)

Hydrogen Bonding Phase Transfer Catalysis

Read More  

NEUTRAMENTH (2018)

A redox-neutral process for the cost-efficient and environmentally friendly production of Menthol

Read More  

EASY-IPS (2019)

a rapid and efficient method for generation of iPSC

Read More